Fundamentos. Circuitos de corriente continua

Teoría de Circuitos

Autor: Luis Badesa Bernardo

(basado en las diapositivas de Óscar Perpiñán Lamigueiro)

¿Qué es la electricidad?

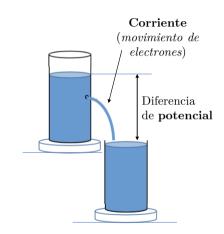
La electricidad es el conjunto de fenómenos físicos relacionados con la **presencia y flujo** de **cargas eléctricas**

▶ Un fenómeno de particular interés es la **corriente eléctrica**:

Movimiento de electrones de los átomos a través de un material conductor (por ejemplo, un cable de cobre)

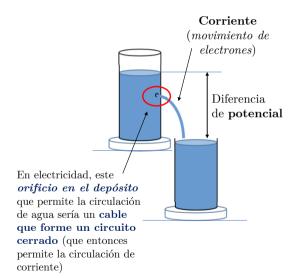
Potencial eléctrico y corriente eléctrica: analogía con la gravedad

- Las dos magnitudes principales en esta asignatura son la diferencia de potencial eléctrico (o tensión) y la corriente eléctrica (o intensidad)
- Para entender estas magnitudes de forma visual, podemos establecer un paralelismo con la gravedad →



Potencial eléctrico y corriente eléctrica: analogía con la gravedad

- Las dos magnitudes principales en esta asignatura son la diferencia de potencial eléctrico (o tensión) y la corriente eléctrica (o intensidad)
- Para entender estas magnitudes de forma visual, podemos establecer un paralelismo con la gravedad →



¿Qué aplicaciones tiene esta asignatura?

Los modelos matemáticos que vamos a estudiar en Teoría de Circuitos se usan en:

- Circuitos de gran tamaño: sistemas eléctricos de potencia
- Circuitos de pequeño tamaño: circuitos electrónicos

- Conceptos fundamentales
- 2 Elementos de los circuitos
- 3 Leyes de Kirchhoff
- Métodos de análisis

Esta asignatura está dedicada al **análisis** de **circuitos eléctricos lineales** de **parámetros concentrados**

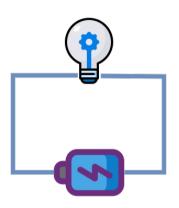
(ahora entenderemos qué significan estos conceptos)

Circuito eléctrico

Un **circuito eléctrico** es un conjunto de componentes eléctricos interconectados que crean un **camino cerrado** por el que puede circular corriente eléctrica

Incluye:

- Elementos activos (generadores): motivan la circulación de corriente
- ► Elementos pasivos (receptores): transforman o almacenan la energía eléctrica



Análisis vs. diseño

El **análisis** (o resolución) de un circuito eléctrico existente persigue determinar sus condiciones de funcionamiento:

- 1 Definir las ecuaciones correspondientes al circuito
- 2 Obtener los <u>valores de determinadas variables</u> importantes, a partir de dichas ecuaciones

El **diseño** (o síntesis) de un circuito eléctrico tiene como objetivo definir el circuito eléctrico, es decir, determinar los componentes necesarios y su interconexión, para obtener unas condiciones de funcionamiento determinadas

En esta asignatura no vamos a diseñar circuitos, únicamente los analizaremos

Sistemas lineales

Todos los circuitos eléctricos que se estudian en esta asignatura se comportan como sistemas lineales:

$$f(x+y) = f(x) + f(y)$$

La respuesta f a la suma de dos entradas x e y es igual a la suma de las respuestas individuales a cada una de las entradas

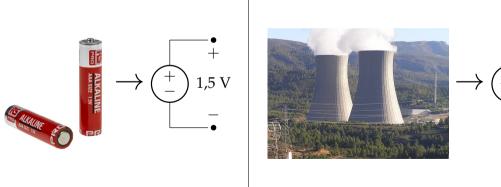
$$f(k \cdot x) = k \cdot f(x)$$

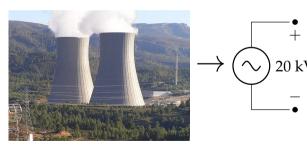
La respuesta a una entrada multiplicada por un factor de escala k es igual a la respuesta a la entrada original multiplicada por este factor de escala

Parámetros concentrados

No nos preocupan las dimensiones espaciales del circuito

Por ejemplo, una pila alcalina y una central nuclear pueden modelarse ambas como fuentes de tensión (la primera de 1,5 V y la segunda de 20 kV)





Parámetros concentrados: ¿cuándo puede aplicarse?

- ► El modelo de parámetros concentrados nos permite simplificar las ecuaciones del electromagnetismo de Maxwell (lo que simplifica mucho los cálculos)
- ► Es aplicable únicamente cuando las **dimensiones** del circuito son **muy inferiores a** la **longitud de onda** de la señal que circula por el circuito

Válido en redes eléctricas

- ► Frecuencia: 50 Hz (en Europa)
- Longitud onda: 6,000 km

No válido en telecomunicaciones

- ► Frecuencia: 26 GHz (telefonía 5G)
- Longitud onda: 11,5 mm

- Conceptos fundamentalesVariables
- 2 Elementos de los circuitos
- 3 Leyes de Kirchhoff
- Métodos de análisis

Variables

Las principales variables con las que se trabaja en los circuitos eléctricos son:

- ► Corriente eléctrica (o *intensidad*, o *amperaje*)
- Tensión eléctrica (o *diferencia de potencial*, o *voltaje*)
- Potencia eléctrica
- Energía eléctrica

Corriente eléctrica

La **intensidad de la corriente eléctrica** es la variación de la carga q(t) que atraviesa la sección transversal de un conductor por unidad de tiempo:

$$i(t) = \frac{dq(t)}{dt}$$

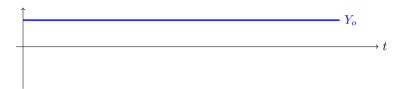
Se produce por el movimiento de electrones (de -a +)

Sin embargo, por razones históricas, el convenio es considerar el **movimiento de cargas positivas** (de + a -)

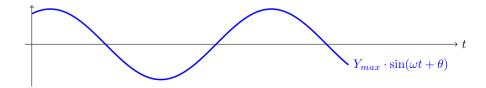
La unidad de la corriente es el amperio [A] (culombios/segundo)

Corriente Continua (CC) y Corriente Alterna (CA)

► Corriente Continua: siempre en el mismo sentido Caso particular, corriente constante $(\frac{d}{dt} = 0)$:



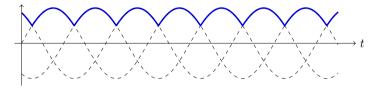
Corriente Alterna: sentido cambiante Caso particular, corriente senoidal:



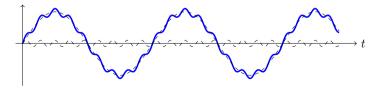
Corriente Continua (CC) y Corriente Alterna (CA)

Otros casos particulares (no estudiados en esta asignatura)

Corriente Continua con rizado (obtenida a partir de alterna trifásica rectificada):



► Corriente **Alterna con armónicos** (obtenida con un inversor CC-CA):



Tensión eléctrica y f.e.m.

El **potencial eléctrico** en un punto, v(t), es la energía potencial que tiene una carga unitaria en ese punto, debida al campo eléctrico

La **tensión** o **diferencia de potencial** entre dos puntos A y B, $u_{AB}(t)$, es el trabajo realizado por el campo eléctrico al desplazar una carga unitaria entre esos puntos

$$u_{AB}(t) = v_A(t) - v_B(t) = rac{dW_e}{dq}$$

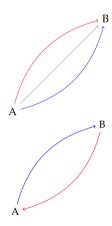
La **fuerza electromotriz** (f.e.m.) es la causa que mantiene a los electrones en movimiento (energía cedida por unidad de carga), y la proporcionan los elementos activos (**generadores**)

La unidad tanto de tensión eléctrica como de f.e.m. es el voltio [V]

La trayectoria no importa, pero el signo depende del sentido

▶ $u_{AB}(t)$ no depende de la trayectoria del desplazamiento de los electrones, sino solo del potencial en cada punto → esto implica que el campo eléctrico es conservativo

 Aunque la trayectoria no sea relevante, hay que tener en cuenta el sentido del desplazamiento



Si el movimiento se produce desde B hasta A, el signo es contrario al anterior:

$$u_{BA} = v_B - v_A = -u_{AB}$$

Potencia eléctrica

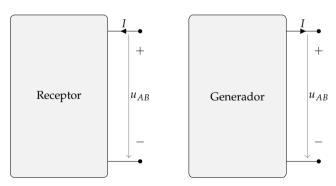
La potencia eléctrica es la variación del trabajo del campo eléctrico por unidad de tiempo:

$$p(t) = \frac{dW_e}{dt} = \underbrace{\frac{dW_e}{dq(t)}}_{u(t)} \cdot \underbrace{\frac{dq(t)}{dt}}_{i(t)} = \underbrace{u(t) \cdot i(t)}$$

La unidad de la potencia eléctrica es el vatio [W]

Receptores y generadores

- Un circuito receptor <u>absorbe</u> potencia y la corriente *entra* por el terminal de mayor potencial
- Un circuito generador entrega potencia y la corriente sale por el terminal de mayor potencial



Potencia y energía

Energía: capacidad de un sistema para realizar un trabajo

 $E = P \cdot t$

Unidades: [J], [Wh], [kWh]

Potencia: trabajo realizado por unidad de tiempo

Unidades: [W], [kW]

- Conceptos fundamentales
- 2 Elementos de los circuitos
- 3 Leyes de Kirchhoff
- Métodos de análisis

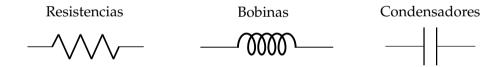
- Conceptos fundamentales
- 2 Elementos de los circuitos
 - Elementos pasivos

Elementos activos

- 3 Leyes de Kirchhoff
- Métodos de análisis

Elementos pasivos en Teoría de Circuitos

Tres tipos de elementos pasivos en esta asignatura:



Resistencia

► Elemento que cumple la **Ley de Ohm**:

Una resistencia *R* provoca una **diferencia de potencial** entre sus terminales **directamente proporcional a la corriente** que la atraviesa

Unidades de resistencia: ohmios $[\Omega]$

$$u(t) = R \cdot i(t)$$

▶ El potencial es mayor en el terminal por el que entra la corriente:

Resistividad

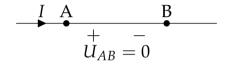
► El valor de la resistencia depende de la **resistividad del material** (ρ), de la sección (S), y de la longitud (l):

$$R = \rho \cdot \frac{l}{S}$$

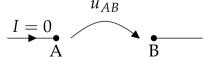
- La **sección** se expresa en mm²
- La **resistividad** depende del material conductor y de la temperatura ambiente:
 - ► Cobre a 20°C: $17.24 \,\mathrm{m}\Omega \,\mathrm{mm}^2 \,\mathrm{m}^{-1}$
 - La resistividad aumenta con la temperatura: los átomos del material vibran con mayor virulencia al subir la temperatura, y por tanto dificultan el flujo de electrones a través del material

Cortocircuito y circuito abierto

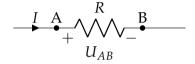
Cortocircuito: resistencia nula (tensión nula)



► Circuito abierto: resistencia infinita (corriente nula)



Ley de Joule



Ley de Joule: las resistencias disipan energía eléctrica produciendo calor

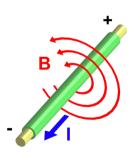
$$p(t) = R \cdot i^2(t)$$

Interludio: aplicaciones del efecto Joule

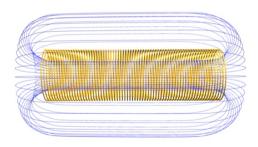
La empresa Manitoba Hydro, en Canadá, usa picos de corriente controlados para deshielo de líneas de transmisión eléctrica (clica en la imagen):

Bobina o inductancia

Cualquier **corriente** (ya sea constante o variable) **crea un campo magnético** a su alrededor (ley de Ampère)



Un conductor arrollado crea un campo magnético más intenso: electroimán



Bobina o inductancia

Bobina: conductor arrollado alrededor de un núcleo

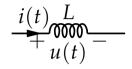
$$\frac{i(t)}{+} \underbrace{0000}_{u(t)} -$$

Cuando una corriente oscilante atraviesa una bobina, se produce una **tensión inducida que se opone a dicha corriente** (ley de Faraday-Lenz)

La tensión inducida es directamente **proporcional al cambio de la corriente**: la constante de proporcionalidad es el coeficiente de autoinducción o **inductancia** 'L' (unidades: henrios [H])

$$u_L(t) = L \cdot \frac{di(t)}{dt}$$

Bobina o inductancia



► Almacena energía magnética:

$$E_L(t) = \int_{-\infty}^t u(\tau) \cdot i(\tau) \ d\tau = \frac{1}{2} \cdot L \cdot i^2(t)$$

En circuitos de CC es un cortocircuito:

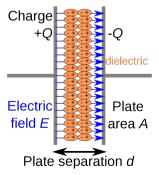
$$\frac{di(t)}{dt} = 0 \quad \Rightarrow \quad U_L = 0$$

Condensador

Material **dieléctrico**:

► Aislante eléctrico (material con baja conductividad), pero con una propiedad particular: sus moléculas se polarizan en presencia de un campo eléctrico

Ejemplos de dieléctricos: aire, vidrio, papel



Condensador

Condensador: dos placas metálicas separadas por un material dieléctrico

Al aplicar tensión se produce una **separación de cargas opuestas** que se **acumulan** en cada placa

$$\begin{array}{c|c} i(t)^{C} \\ \hline + \\ u(t) \end{array}$$

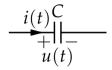
La **carga acumulada** en un instante es **proporcional** a la **diferencia de potencial** en ese instante: la constante de proporcionalidad es la **capacidad** (unidades: faradios [F])

$$q(t) = C \cdot u(t)$$

► En el proceso de carga se produce una corriente eléctrica entre las dos placas:

$$i_C(t) = \frac{dq(t)}{dt} = \boxed{C \cdot \frac{du(t)}{dt}}$$

Condensador



Un condensador almacena energía eléctrica:

$$E_c(t) = \int_{-\infty}^t u(\tau) \cdot i(\tau) \ d\tau = \boxed{\frac{1}{2} \cdot C \cdot u^2(t)}$$

▶ En un circuito de corriente continua se comporta como un circuito abierto:

$$\frac{du(t)}{dt} = 0 \quad \Rightarrow \quad I_c = 0$$

36 / 102

- Conceptos fundamentales
- 2 Elementos de los circuitos

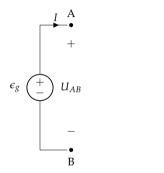
Elementos pasivos

Elementos activos

- 3 Leyes de Kirchhoff
- Métodos de análisis

Generadores de tensión

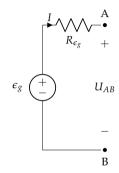
Proporcionan una diferencia de potencial U entre sus bornes de salida



Ideal:

impone tensión a la salida (la corriente depende del circuito)

$$u_{AB} = \epsilon_g$$



Real:

con pérdidas, modeladas mediante una resistencia **en serie**

$$u_{AB} < \epsilon_g$$

Se caracterizan por su **fuerza electromotriz** ϵ_g (voltios [V])

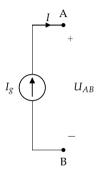
$$\epsilon_g = U_{AB} + R_{\epsilon_g} \cdot I$$

$$P_g = \epsilon_g \cdot I$$

(estas expresiones se entenderán mejor cuando veamos las leyes de Kirchhoff)

Generadores de corriente

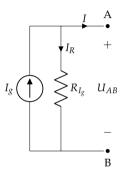
Proporcionan una corriente I



Ideal:

impone corriente a la salida (la tensión depende del circuito)

$$I = I_g$$



Real: con pérdidas, modeladas mediante una resistencia **en paralelo**

$$I < I_g$$

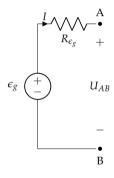
Se caracterizan por su **corriente de generador** I_g (amperios [A])

$$I_{g} = I + \frac{U_{AB}}{R_{I_{g}}}$$

$$P_{g} = U_{AB} \cdot I_{g}$$

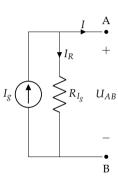
(estas expresiones se entenderán mejor cuando veamos las leyes de Kirchhoff)

Equivalencia de fuentes



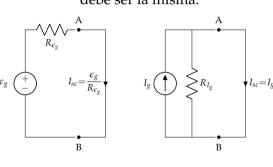
Dos fuentes son equivalentes cuando suministran el mismo valor de tensión y corriente a un circuito externo, para cualquier circuito

 Sólo es posible establecer equivalencia entre fuentes reales

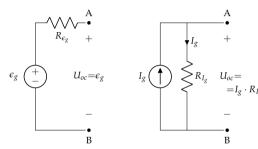


Equivalencia de fuentes

La corriente en cortocircuito (I_{sc}) debe ser la misma:



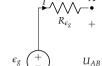
Y la **tensión en circuito abierto** ($'U_{oc}'$) debe ser la misma:



$$I_{sc} = I_g = \frac{\epsilon_g}{R_{\epsilon_g}}, \quad U_{oc} = \epsilon_g = I_g \cdot R_{I_g} \quad \rightarrow \quad \boxed{R_{\epsilon_g} = R_{I_g}}$$

(SC \equiv short circuit, OC \equiv open circuit)

Equivalencia de fuentes

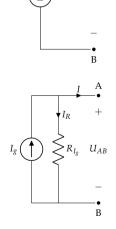


La salida de tensión de una fuente de tensión es:

$$U_{AB} = \epsilon_{g} - R_{\epsilon_{g}} \cdot I$$

Y de una fuente de corriente:

$$I = I_g - rac{U_{AB}}{R_{I_g}} \quad o \quad U_{AB} = R_{I_g} \cdot I_g - R_{I_g} \cdot I_g$$



Las **fuentes son equivalentes cuando** las ecuaciones coinciden para cualquier combinación (U_{AB} , I):

$$R_{g}=R_{\epsilon_{g}}=R_{I_{g}}$$
 (resultado de la diapositiva anterior)

$$\left[\epsilon_{g} = R_{g} \cdot I_{g}\right] \iff \left[I_{g} = \frac{\epsilon_{g}}{R_{g}}\right]$$

Eficiencia

Cociente entre la potencia de salida y la potencia de entrada:

► **Receptor** (generalmente, motor):

$$\eta_m = \frac{P_{ ext{útil}}}{P_{ ext{absorbida}}}$$

► Generador:

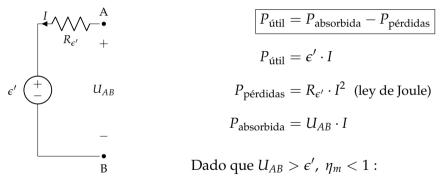
$$\eta_{g} = rac{P_{ ext{entregada}}}{P_{ ext{producida}}}$$

Cualquier máquina tiene pérdidas (por disipación de energía en forma de calor):

$$\eta < 1$$

Balance de potencias, ejemplo: motor

Caracterizado por su **fuerza contraelectromotriz** (f.c.e.m., ϵ'): energía por unidad de carga, que transforma en otro tipo de energía (mecánica, química, etc.)



Real (con pérdidas) $U_{AB} > \epsilon'$

$$\eta_m = rac{P_{ ext{util}}}{P_{ ext{absorbida}}} = rac{\epsilon' \cdot 1}{U_{AB} \cdot 1} < 1$$

- Conceptos fundamentales
- 2 Elementos de los circuitos
- 3 Leyes de Kirchhoff
- Métodos de análisis

Definiciones

Nudo unión de 3 o más conductores (en la figura, los puntos A, B, C y D)

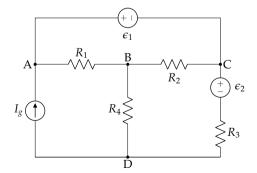
Rama elementos conectados entre dos nudos consecutivos

(A-B, A-C, A-D, B-C, B-D y C-D)

Lazo conjunto de ramas que forman un camino cerrado

(ACDA, ACBDA, ACDBA, ABCDA, ABCA, ABDA, BCDB)

Malla lazo que no contiene ningún otro en su interior (ABCA, ABDA, BCDB)



Primera Ley de Kirchhoff (1LK)

► La 1LK es el principio de conservación de la carga aplicado a los circuitos eléctricos:

La suma de las corrientes que llegan a un nudo es igual a la suma de las que salen

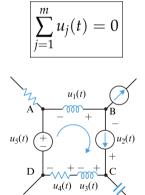
$$\sum_{j=1}^{n} i_j(t) = 0$$

$$i_1(t) - i_2(t) + i_3(t) - i_4(t) + i_5(t) = 0$$

Segunda Ley de Kirchhoff (2LK)

La 2LK es el principio de conservación de la energía aplicado a los circuitos:

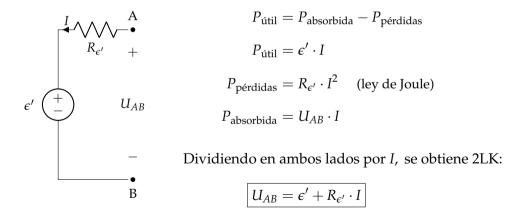
La suma (con signo) de las tensiones a lo largo de un camino cerrado es cero



$$-u_1(t) - u_2(t) + u_3(t) + u_4(t) - u_5(t) = 0$$

2LK a partir de balance de potencias

► Ejemplo: motor real (con pérdidas)



Ejercicio

Un generador cuya *fem* es de 120 V y resistencia de 0,2 Ω , da una corriente de 20 A a un motor situado a 300 m de distancia y de resistencia 0,5 Ω

La línea que los conecta es de cobre, de resistividad 17,24 m $\Omega\,\mathrm{mm^2\,m^{-1}}$

Sabiendo que el motor absorbe 10,2 kWh en 5 h, se debe hallar:

- 1 La fuerza contraelectromotriz (fcem) del motor
- 2 La sección de los conductores de la línea
- 3 Los rendimientos de: motor, generador, línea y rendimiento total
- 4 El balance general de potencias

Solución: aquí

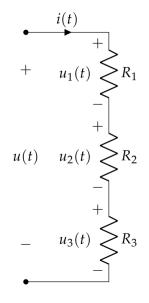
- Conceptos fundamentales
- 2 Elementos de los circuitos
- 3 Leyes de Kirchhoff Asociación de elementos
- Métodos de análisis

Asociación de elementos

Las principales formas de asociar elementos en un circuito son:

- ightharpoonup Serie: final de un elemento conectado con principio del siguiente ightarrow misma corriente
- ightharpoonup Paralelo: todos los principios conectados en un punto, todos los finales en otro ightharpoonup misma diferencia de potencial
- ▶ Mixto: combinación de serie y paralelo
- **Estrella Triángulo:** conexión de cargas trifásicas

Conexión en serie

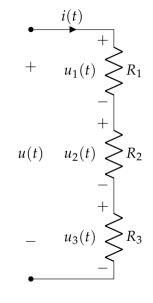


Un conjunto de elementos están asociados en serie cuando

Definimos la resistencia equivalente de la conexión serie:

$$R_{eq} = \sum_{i=1}^{n} R_i$$
 dado que $u(t) = R_{eq} \cdot i(t)$

Conexión en serie: divisor de tensión



De las ecuaciones anteriores tenemos:

$$\frac{u(t)}{R_1 + R_2 + R_3} = i(t) = \frac{u_3(t)}{R_3}$$

Por tanto, la **tensión parcial** $u_3(t)$ se puede expresar en función de la tensión total u(t):

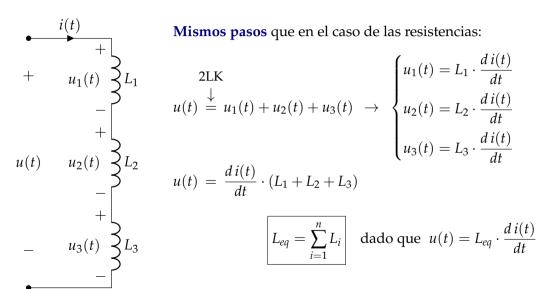
$$u_3(t) = u(t) \cdot \frac{R_3}{R_1 + R_2 + R_3}$$

En general, para cualquiera de las resistencias, R_i :

$$u_i(t) = u(t) \cdot \frac{R_i}{R_{eq}}$$

(expresión útil para agilizar la resolución de algunos ejercicios)

Conexión en serie de bobinas



Conexión en serie de condensadores

$$\begin{array}{ccc}
 & i(t) \\
+ & u_1(t)
\end{array}$$

$$u(t) & u_2(t)$$

Misma corriente por los *C* en serie:

$$d u_1(t) \qquad d u_2(t)$$

$$i(t) = C_1 \cdot \frac{d u_1(t)}{dt} = C_2 \cdot \frac{d u_2(t)}{dt} = C_3 \cdot \frac{d u_3(t)}{dt}$$

$$i(t) = C_1 \cdot \frac{u_1(t)}{dt} = C_2 \cdot \frac{u_2(t)}{dt} = C_3 \cdot \frac{u_3(t)}{dt}$$

$$2LK$$

$$u(t) \stackrel{\downarrow}{=} u_1(t) + u_2(t) + u_3(t) \rightarrow \begin{cases} u_1(t) = \frac{1}{C} \\ u_2(t) = \frac{1}{C} \end{cases}$$

$$u(t) = \int_{0}^{t} i(\tau) d\tau \cdot \left(\frac{1}{C_{1}} + \frac{1}{C_{2}} + \frac{1}{C_{3}}\right)$$

$$\frac{1}{C_{eq}} = \sum_{i=1}^{n} \frac{1}{C_{i}} \quad \text{dado que } i(t) = C_{eq} \cdot \frac{d u(t)}{dt}$$

Conexión en serie de generadores

Generadores de tensión

▶ Pueden conectarse en serie sin restricción (tanto generadores ideales como reales)

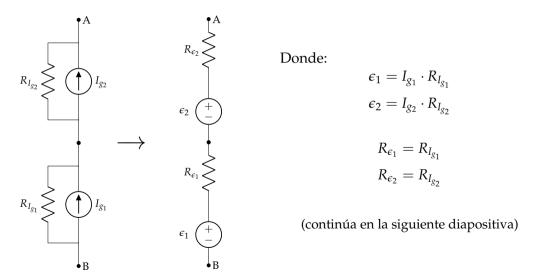
$$\epsilon_T = \sum_{i=1}^N \epsilon_i \ R_{\epsilon_T} = \sum_{i=1}^N R_{\epsilon_i}$$

Generadores de corriente

- ► Ideal: todas las fuentes deben ser idénticas (valor y sentido)
- ► Real: sin restricción
 - ► Transformación a fuentes de tensión para obtener la fuente equivalente

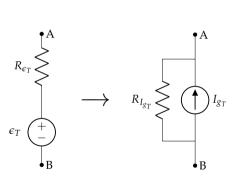
Ejemplo: fuentes de corriente reales en serie

Se transforman primero cada una de las fuentes de corriente en fuentes de tensión:



Ejemplo: fuentes de corriente reales en serie (continuación)

Las fuentes de tensión en serie se asocian en una fuente equivalente, y esta se transforma de vuelta en una fuente de corriente:



Donde:

$$\epsilon_T = \epsilon_1 + \epsilon_2 = I_{g_1} \cdot R_{I_{g_1}} + I_{g_2} \cdot R_{I_{g_2}}$$

$$R_{\epsilon_T} = R_{\epsilon_1} + R_{\epsilon_2} = R_{I_{g_1}} + R_{I_{g_2}}$$

Y finalmente:

$$I_{g_T} = rac{\epsilon_T}{R_{I_{g_T}}} = rac{I_{g_1} \cdot R_{I_{g_1}} + I_{g_2} \cdot R_{I_{g_2}}}{R_{I_{g_1}} + R_{I_{g_2}}}$$

$$R_{I_{g_T}} = R_{\epsilon_T} = R_{I_{g_1}} + R_{I_{g_2}}$$

Conexión en paralelo

Un conjunto de elementos están asociados en paralelo cuando están sometidos a la **misma tensión**:

$$i_{1}(t) = \frac{u(t)}{R_{1}}$$

$$i_{2}(t) = \frac{u(t)}{R_{2}}$$

$$R_{3}$$

$$i_{3}(t) = \frac{u(t)}{R_{3}}$$

$$i_{3}(t) = \frac{u(t)}{R_{3}}$$

$$1LK$$

$$i_{1}(t) = i_{1}(t) + i_{2}(t) + i_{3}(t)$$

$$= u(t) \cdot \left(\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}}\right)$$

Definimos la **resistencia equivalente** del paralelo:

$$\boxed{\frac{1}{R_{eq}} = \sum_{i=1}^{n} \frac{1}{R_i}} \quad \text{dado que } u(t) = R_{eq} \cdot i(t)$$

Conexión en paralelo: caso particular de dos resistencias

En el caso concreto de **dos resistencias en paralelo**, la expresión es:

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$$

$$R_{eq} = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

(conveniente recordarla para agilizar la resolución de algunos ejercicios)

Para 'N' resistencias iguales asociadas en paralelo, cada una de valor 'R':

$$R_{eq} = \frac{R}{N}$$

Conductancia

Para **simplificar las operaciones** en conexiones en paralelo, es conveniente utilizar el inverso de la resistencia, la **conductancia** *G*:

$$G = \frac{1}{R}$$

Así, en lugar de...

$$\frac{1}{R_{eq}} = \sum_{i=1}^{n} \frac{1}{R_i}$$

$$u(t) = R_{eq} \cdot i(t)$$

...se puede escribir:

$$G_{eq} = \sum_{i=1}^{n} G_{i}$$
 y usar $\underline{i(t) = G_{eq} \cdot u(t)}$ ley de Ohm

Conexión en paralelo: divisor de corriente

De las ecuaciones anteriores tenemos:

$$\frac{i(t)}{G_1 + G_2 + G_3} = u(t) = \frac{i_3(t)}{G_3}$$

Por tanto, la **corriente parcial** $i_3(t)$ se puede expresar en función de la corriente total i(t):

$$i_3(t) = i(t) \cdot \frac{G_3}{G_1 + G_2 + G_3}$$

En general, para cualquiera de las conductancias, G_j :

$$i_j(t) = i(t) \cdot \frac{G_j}{G_{eq}} = i(t) \cdot \frac{R_{eq}}{R_j}$$

(expresión útil para agilizar la resolución de ejercicios)

Divisor de corriente: caso particular de dos resistencias

En el caso concreto de **dos resistencias en paralelo**, la expresión es:

$$i_1(t) = i(t) \cdot \frac{G_1}{G_1 + G_2} = i(t) \cdot \frac{R_1 \parallel R_2}{R_1} = i(t) \cdot \frac{R_1 \cdot R_2}{R_1 + R_2} \cdot \frac{1}{R_1}$$

$$i_1(t) = i(t) \cdot \frac{R_2}{R_1 + R_2}$$

Para 'N' resistencias iguales asociadas en paralelo:

$$i_j(t) = \frac{i(t)}{N}$$

Conexión en paralelo de condensadores

Mismos pasos que en el caso de las resistencias:

1LK
$$i(t) \stackrel{i(t)}{=} i_{1}(t) + i_{2}(t) + i_{3}(t) \rightarrow \begin{cases} i_{1}(t) = C_{1} \cdot \frac{du(t)}{dt} \\ i_{2}(t) = C_{2} \cdot \frac{du(t)}{dt} \\ i_{3}(t) = C_{3} \cdot \frac{du(t)}{dt} \end{cases}$$

$$i(t) = \frac{du(t)}{dt} \cdot (C_{1} + C_{2} + C_{3})$$

$$C_{1} \stackrel{i_{1}(t)}{=} C_{2} \stackrel{i_{2}(t)}{=} C_{3} \cdot \frac{du(t)}{dt}$$

$$i(t) = \frac{du(t)}{dt} \cdot (C_{1} + C_{2} + C_{3})$$

1LK
$$(t) \stackrel{\downarrow}{=} i_1(t) + i_2(t) + i_3(t) \rightarrow$$

$$C_{eq} = \sum_{i=1}^{n} C_{i}$$
 dado que $i(t) = C_{eq} \cdot \frac{d u(t)}{dt}$

Conexión en paralelo de bobinas

Misma tensión en las *L* en paralelo:

$$u(t) = L_{1} \cdot \frac{d i_{1}(t)}{dt} = L_{2} \cdot \frac{d i_{2}(t)}{dt} = L_{3} \cdot \frac{d i_{3}(t)}{dt}$$

$$1LK$$

$$u(t) = L_{1} \cdot \frac{d i_{1}(t)}{dt} = L_{2} \cdot \frac{d i_{2}(t)}{dt} = L_{3} \cdot \frac{d i_{3}(t)}{dt}$$

$$1LK$$

$$i(t) \stackrel{\downarrow}{=} i_{1}(t) + i_{2}(t) + i_{3}(t) \rightarrow \begin{cases} i_{1}(t) = \frac{1}{L_{1}} \int_{0}^{t} u(\tau) d\tau \\ i_{2}(t) = \frac{1}{L_{2}} \int_{0}^{t} u(\tau) d\tau \\ i_{3}(t) = \frac{1}{L_{3}} \int_{0}^{t} u(\tau) d\tau \end{cases}$$

$$i(t) = \int_{0}^{t} u(\tau) d\tau \cdot \left(\frac{1}{L_{1}} + \frac{1}{L_{2}} + \frac{1}{L_{3}}\right)$$

with the first entries
$$L$$
 entries L en

 $i(t) = \int_0^t u(\tau) d\tau \cdot \left(\frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_2}\right)$ $\left| \frac{1}{L_{eq}} = \sum_{i=1}^{n} \frac{1}{L_i} \right|$ dado que $u(t) = L_{eq} \cdot \frac{d i(t)}{dt}$

Conexión en paralelo de generadores

Generadores de tensión

- ► Ideal: todas las fuentes deben ser idénticas (valor y polaridad)
- ► Real: sin restricción
 - ► Transformación a fuentes de corriente para obtener la fuente equivalente

Generadores de corriente

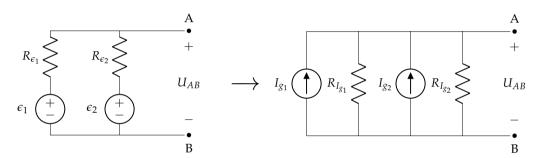
► Pueden conectarse en paralelo sin restricción

$$I_{g_T} = \sum_{i=1}^N I_{g_i}$$

$$G_{g_T} = \sum_{i=1}^N G_{g_i}$$

Ejemplo: fuentes de tensión reales en paralelo

Se transforman primero cada una de las fuentes de tensión en fuentes de corriente:



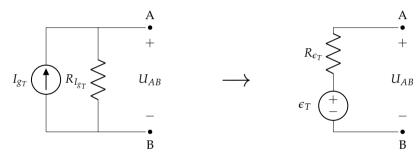
Donde:

$$I_{g_1}=rac{\epsilon_1}{R_c}$$
 $I_{g_2}=rac{\epsilon_2}{R_c}$ $R_{I_{g_1}}=R_{\epsilon_1}$ $R_{I_{g_2}}=R_{\epsilon_2}$

(continúa en la siguiente diapositiva)

Ejemplo: fuentes de tensión reales en paralelo (continuación)

Las fuentes de corriente en paralelo se asocian en una fuente equivalente, y esta se transforma de vuelta en una fuente de tensión:



$$\begin{split} I_{g_T} &= I_{g_1} + I_{g_2} = \frac{\epsilon_1}{R_{\epsilon_1}} + \frac{\epsilon_2}{R_{\epsilon_2}} \\ R_{I_{g_T}} &= R_{I_{g_1}} \parallel R_{I_{g_2}} = R_{\epsilon_1} \parallel R_{\epsilon_2} \end{split}$$

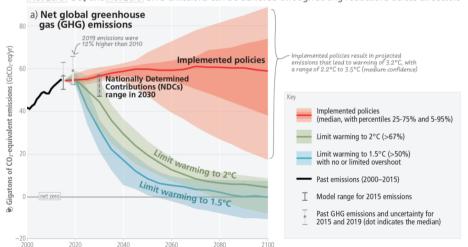
$$\boxed{\epsilon_T = R_{\epsilon_T} \cdot I_{g_T} = \frac{\epsilon_1 \cdot R_{\epsilon_2} + \epsilon_2 \cdot R_{\epsilon_1}}{R_{\epsilon_1} + R_{\epsilon_2}}}$$

 $R_{\epsilon_T} = R_{I_{g_T}} = R_{\epsilon_1} \parallel R_{\epsilon_2}$

Interludio: escenarios climáticos

Limiting warming to 1.5°C and 2°C involves rapid, deep and in most cases immediate greenhouse gas emission reductions

Net zero CO₂ and net zero GHG emissions can be achieved through strong reductions across all sectors



¿Cómo te va a a afectar a ti?

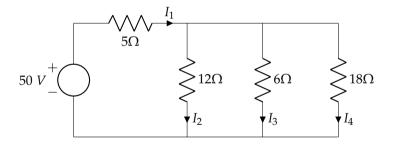
Mira esto

Fuente:
"Synthesis report
of the IPCC sixth
assessment report
(AR6)", 2023

Conexión mixta

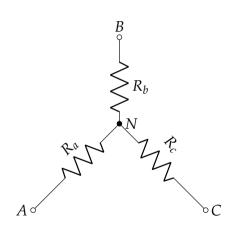
Ejemplo

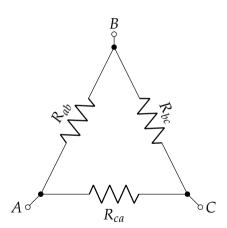
Calcular la corriente que aporta la fuente de tensión del siguiente circuito:



Solución: 6,04 A

Conexión estrella - triángulo

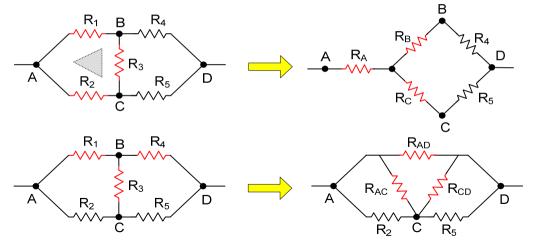




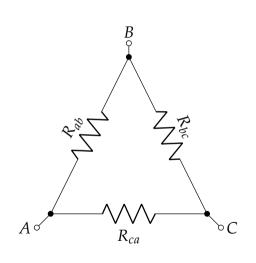
Conexión estrella - triángulo

Existen acomplamientos que no se simplifican mediante reducciones "serie" o "paralelo"

Son necesarias otras transformaciones:



Conexión triángulo



La resistencia **vista entre los terminales** A y B es la asociación paralelo de R_{ab} con el serie de R_{bc} y R_{ca} :

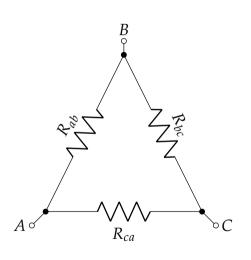
$$R_{AB} = \frac{R_{ab} \cdot (R_{bc} + R_{ca})}{R_{ab} + R_{bc} + R_{ca}}$$

De la misma forma, para los terminales B-C y C-A:

$$R_{BC} = \frac{R_{bc} \cdot (R_{ab} + R_{ca})}{R_{ab} + R_{bc} + R_{ca}}$$

$$R_{CA} = \frac{R_{ca} \cdot (R_{ab} + R_{bc})}{R_{ab} + R_{bc} + R_{ca}}$$

Conexión triángulo



Desarrollando los productos:

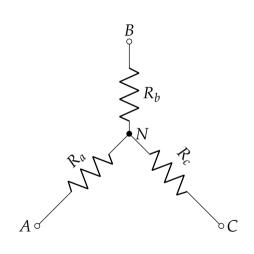
$$R_{AB} = \frac{R_{ab} \cdot R_{bc}}{R_{ab} + R_{bc} + R_{ca}} + \frac{R_{ab} \cdot R_{ca}}{R_{ab} + R_{bc} + R_{ca}}$$

$$R_{BC} = \frac{R_{bc} \cdot R_{ab}}{R_{ab} + R_{bc} + R_{ca}} + \frac{R_{bc} \cdot R_{ca}}{R_{ab} + R_{bc} + R_{ca}}$$

$$R_{CA} = \frac{R_{ca} \cdot R_{ab}}{R_{ab} + R_{bc} + R_{ca}} + \frac{R_{ca} \cdot R_{bc}}{R_{ab} + R_{bc} + R_{ca}}$$

(en un momento veremos para qué son útiles estas expresiones)

Conexión estrella



La resistencia **vista entre los terminales** A y B es simplemente la asociación serie de R_a y R_b :

$$R_{AB} = R_a + R_b$$

De la misma forma, para los terminales B-C y C-A:

$$R_{BC} = R_b + R_c$$

$$R_{CA} = R_c + R_a$$

Conexión triángulo - estrella: equivalencia

Combinando las expresiones de las dos diapositivas anteriores:

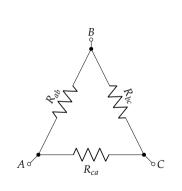
$$\frac{R_{ab} \cdot R_{bc}}{R_{ab} + R_{bc} + R_{ca}} + \frac{R_{ab} \cdot R_{ca}}{R_{ab} + R_{bc} + R_{ca}} = R_a + R_b$$

$$\frac{R_{ab} \cdot R_{bc}}{R_{ab} + R_{bc} + R_{ca}} + \frac{R_{bc} \cdot R_{ca}}{R_{ab} + R_{bc} + R_{ca}} = R_b + R_c$$

$$\frac{R_{ab} \cdot R_{ca}}{R_{ab} + R_{bc} + R_{ca}} + \frac{R_{bc} \cdot R_{ca}}{R_{ab} + R_{bc} + R_{ca}} = R_c + R_a$$

Para **convertir de triángulo a estrella**: la expresión, por ejemplo, para R_a , se obtiene combinando la primera ecuación, menos la segunda, más la tercera (siguiente diapositiva)

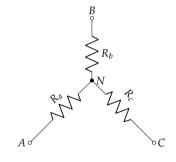
Conversión de triángulo a estrella



$$R_a = \frac{R_{ab} \cdot R_{ca}}{R_{ab} + R_{bc} + R_{ca}}$$

$$R_{b} = \frac{R_{ab} \cdot R_{bc}}{R_{ab} + R_{bc} + R_{ca}}$$

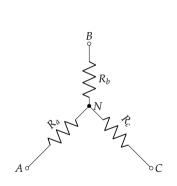
$$R_c = \frac{R_{bc} \cdot R_{ca}}{R_{ab} + R_{bc} + R_{ca}}$$



Regla mnemotécnica:

la expresión para R_a tiene en el numerador el producto de las 2 resistencias conectadas al terminal A

Conversión de estrella a triángulo

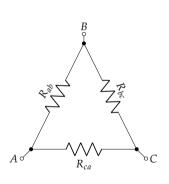


$$G_{ab} = \frac{G_a \cdot G_b}{G_a + G_b + G_c}$$

$$G_{bc} = \frac{G_b \cdot G_c}{G_a + G_b + G_c}$$

$$G_{ca} = \frac{G_c \cdot G_a}{G_a + G_b + G_c}$$

(si os interesa la demostración, está aquí)



Conexión estrella - triángulo, caso particular

En el caso concreto de que las **resistencias** en estrella/triángulo sean **iguales**...

$$R_a = R_b = R_c = R_{\perp}$$

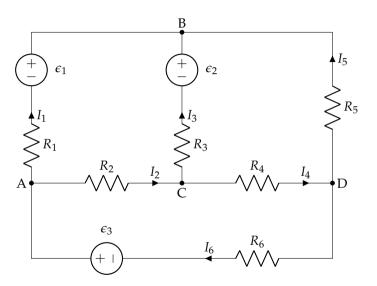
 $R_{ab} = R_{bc} = R_{ca} = R_{\triangle}$

...las expresiones anteriores se reducen a:

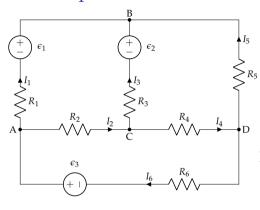
$$R_{\triangle} = 3 \cdot R_{\perp}$$

(este resultado será muy útil en el Tema 3, en corriente alterna trifásica equilibrada)

- Conceptos fundamentales
- 2 Elementos de los circuitos
- 3 Leyes de Kirchhoff
- Métodos de análisis



Paso 1: aplicar 1LK



Cuatro nudos (N = 4):

Nudo A:
$$I_6 = I_1 + I_2$$

Nudo B:
$$I_1 + I_3 + I_5 = 0$$

Nudo C:
$$I_2 = I_3 + I_4$$

Nudo D:
$$I_4 = I_5 + I_6$$

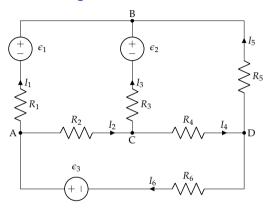
No son ecuaciones linealmente independientes:

$$C = A + B + D$$

El número de ecuaciones linealmente independientes aplicando 1LK es N-1

► Lo relevante son las **diferencias de potencial**, así que uno de los nudos siempre es la referencia de potenciales (se puede tomar como potencial cero, o tierra)

Paso 2: aplicar 2LK



Malla ABCA

$$I_1 \cdot R_1 - \epsilon_1 + \epsilon_2 - I_3 \cdot R_3 - I_2 \cdot R_2 = 0$$

Malla BDCB

$$-I_5 \cdot R_5 - I_4 \cdot R_4 + I_3 \cdot R_3 - \epsilon_2 = 0$$

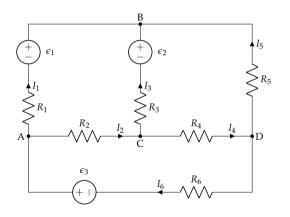
Malla ACDA

$$I_2 \cdot R_2 + I_4 \cdot R_4 + I_6 \cdot R_6 - \epsilon_3 = 0$$

El número de **ecuaciones linealmente independientes** aplicando 2LK es R - (N - 1) (n° de ramas – (n° de nudos – 1) = **n° de mallas**)

Definición de rama, nudo y malla en la diapositiva 46

Paso 3: combinar las ecuaciones



$$-I_{1} - I_{2} + I_{6} = 0$$

$$I_{1} + I_{3} + I_{5} = 0$$

$$I_{4} - I_{5} - I_{6} = 0$$

$$I_{1} \cdot R_{1} - I_{2} \cdot R_{2} - I_{3} \cdot R_{3} = \epsilon_{1} - \epsilon_{2}$$

$$I_{3} \cdot R_{3} - I_{4} \cdot R_{4} - I_{5} \cdot R_{5} = \epsilon_{2}$$

$$I_{2} \cdot R_{2} + I_{4} \cdot R_{4} + I_{6} \cdot R_{6} = \epsilon_{3}$$

Paso 3, en forma matricial

$$\begin{bmatrix} -1 & -1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & -1 & -1 \\ R_1 & -R_2 & -R_3 & 0 & 0 & 0 \\ 0 & 0 & R_3 & -R_4 & -R_5 & 0 \\ 0 & R_2 & 0 & R_4 & 0 & R_6 \end{bmatrix} \cdot \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \epsilon_1 - \epsilon_2 \\ \epsilon_2 \\ \epsilon_3 \end{bmatrix}$$

Analizar el circuito implica resolver un sistema lineal de **6 ecuaciones**, en el que las incógnitas son las corrientes de cada rama

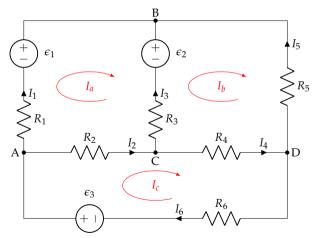
Pero existen estrategias más eficientes para resolver circuitos, usando sistemas de ecuaciones de menores dimensiones, que veremos a continuación

- Conceptos fundamentales
- 2 Elementos de los circuitos
- 3 Leyes de Kirchhoff
- 4 Métodos de análisis
 - Método de las mallas

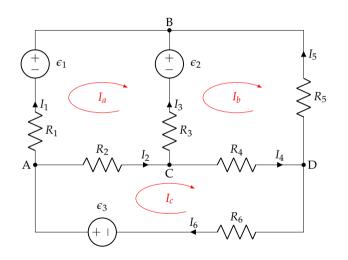
Método de los nudos

Método de las mallas

El método de las mallas simplifica el sistema de ecuaciones necesario mediante unas corrientes *ficticias* denominadas **corrientes de malla**, aprovechando las relaciones entre corrientes de la 1LK



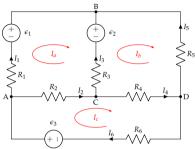
Relaciones entre las corrientes de rama y malla



$$I_1 = I_a$$

 $I_5 = -I_b$
 $I_6 = I_c$
 $I_2 = I_c - I_a$
 $I_3 = I_b - I_a$
 $I_4 = I_c - I_b$

Ecuaciones de malla, aplicando 2LK



$$I_a \cdot R_1 - \epsilon_1 + \epsilon_2 + (I_a - I_b) \cdot R_3 + (I_a - I_c) \cdot R_2 = 0$$

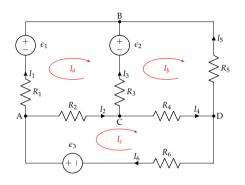
Malla BDCB

$$I_b \cdot R_5 + (I_b - I_c) \cdot R_4 + (I_b - I_a) \cdot R_3 - \epsilon_2 = 0$$

Malla ACDA

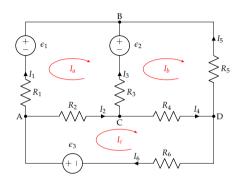
$$(I_c - I_a) \cdot R_2 + (I_c - I_b) \cdot R_4 + I_c \cdot R_6 - \epsilon_3 = 0$$

Reagrupamos corrientes en las ecuaciones



$$I_a \cdot (R_1 + R_3 + R_2) - I_b \cdot R_3 - I_c \cdot R_2 = \epsilon_1 - \epsilon_2$$
$$-I_a \cdot R_3 + I_b \cdot (R_5 + R_4 + R_3) - I_c \cdot R_4 = \epsilon_2$$
$$-I_a \cdot R_2 - I_b \cdot R_4 + I_c \cdot (R_2 + R_4 + R_6) = \epsilon_3$$

Y lo expresamos en forma matricial



$$\begin{bmatrix} (R_1 + R_3 + R_2) & -R_3 & -R_2 \\ -R_3 & (R_5 + R_4 + R_3) & -R_4 \\ -R_2 & -R_4 & (R_2 + R_4 + R_6) \end{bmatrix} \cdot \begin{bmatrix} I_a \\ I_b \\ I_c \end{bmatrix} = \begin{bmatrix} \epsilon_1 - \epsilon_2 \\ \epsilon_2 \\ \epsilon_3 \end{bmatrix}$$

Ecuación general del método de las mallas

$$\begin{bmatrix}
\sum_{\substack{R_{aa} \\ \pm \sum R_{ba} \\ \vdots \\ \pm \sum R_{na} \\ \text{matriz simétrica. } n \times n} & \pm \sum_{\substack{L \\ E_{na} \\ \text{matriz simétrica. } n \times n} & \pm \sum_{\substack{L \\ E_{na} \\ \text{matriz simétrica. } n \times n}} & \begin{bmatrix}
I_a \\ I_b \\ \vdots \\ I_n
\end{bmatrix} = \begin{bmatrix}
\pm \sum_{\substack{L \\ E_a \\ \text{matriz simétrica. } n \times n} \\ \pm \sum_{\substack{L \\ E_n \\ \text{matriz simétrica. } n \times n}} & \begin{bmatrix}
I_a \\ I_b \\ \vdots \\ I_n
\end{bmatrix} = \begin{bmatrix}
\pm \sum_{\substack{L \\ E_a \\ \text{matrix simétrica. } n \times n}} & \begin{bmatrix}
I_a \\ I_b \\ \vdots \\ I_n
\end{bmatrix} = \begin{bmatrix}
\pm \sum_{\substack{L \\ E_a \\ \text{matrix simétrica. } n \times n}} & \begin{bmatrix}
I_a \\ I_b \\ \vdots \\ I_n
\end{bmatrix} = \begin{bmatrix}
\pm \sum_{\substack{L \\ E_a \\ \text{matrix simétrica. } n \times n}} & \begin{bmatrix}
I_a \\ I_b \\ \vdots \\ I_n
\end{bmatrix} = \begin{bmatrix}
\pm \sum_{\substack{L \\ E_a \\ \text{matrix simétrica. } n \times n}} & \begin{bmatrix}
I_a \\ I_b \\ \vdots \\ I_n
\end{bmatrix} = \begin{bmatrix}
\pm \sum_{\substack{L \\ E_a \\ \text{matrix simétrica. } n \times n}} & \begin{bmatrix}
I_a \\ I_b \\ \vdots \\ I_n
\end{bmatrix} = \begin{bmatrix}
\pm \sum_{\substack{L \\ E_a \\ \text{matrix simétrica. } n \times n}} & \begin{bmatrix}
I_a \\ I_b \\ \vdots \\ I_n
\end{bmatrix} = \begin{bmatrix}
\pm \sum_{\substack{L \\ E_a \\ \text{matrix simétrica. } n \times n}} & \begin{bmatrix}
I_a \\ I_b \\ \vdots \\ I_n
\end{bmatrix} = \begin{bmatrix}
\pm \sum_{\substack{L \\ E_a \\ \text{matrix simétrica. } n \times n}} & \begin{bmatrix}
I_a \\ I_b \\ \vdots \\ I_n
\end{bmatrix} = \begin{bmatrix}
\pm \sum_{\substack{L \\ E_a \\ \text{matrix simétrica. } n \times n}} & \begin{bmatrix}
I_a \\ I_b \\ \vdots \\ I_n
\end{bmatrix} = \begin{bmatrix}
\pm \sum_{\substack{L \\ E_a \\ \text{matrix simétrica. } n \times n}} & \begin{bmatrix}
I_a \\ I_b \\ \vdots \\ I_n
\end{bmatrix} = \begin{bmatrix}
\pm \sum_{\substack{L \\ E_a \\ \text{matrix simétrica. } n \times n}} & \begin{bmatrix}
I_a \\ I_a \\ \vdots \\ I_n
\end{bmatrix} = \begin{bmatrix}
\pm \sum_{\substack{L \\ E_a \\ \text{matrix simétrica. } n \times n}} & \begin{bmatrix}
I_a \\ I_a \\ \vdots \\ I_n
\end{bmatrix} = \begin{bmatrix}
\pm \sum_{\substack{L \\ E_a \\ \text{matrix simétrica. } n \times n}} & \begin{bmatrix}
I_a \\ I_a \\ \vdots \\ I_n
\end{bmatrix} = \begin{bmatrix}
\pm \sum_{\substack{L \\ E_a \\ \text{matrix simétrica. } n \times n}} & \begin{bmatrix}
I_a \\ I_a \\ \vdots \\ I_n
\end{bmatrix} = \begin{bmatrix}
\pm \sum_{\substack{L \\ E_a \\ \text{matrix simétrica. } n \times n}} & \begin{bmatrix}
I_a \\ I_a \\ \vdots \\ I_n
\end{bmatrix} = \begin{bmatrix}
\pm \sum_{\substack{L \\ E_a \\ \text{matrix simétrica. } n \times n}} & \begin{bmatrix}
I_a \\ I_a \\ \vdots \\ I_n
\end{bmatrix} = \begin{bmatrix}
\pm \sum_{\substack{L \\ E_a \\ \text{matrix simétrica. } n \times n}} & \begin{bmatrix}
I_a \\ I_a \\ \vdots \\ I_n
\end{bmatrix} = \begin{bmatrix}
\pm \sum_{\substack{L \\ E_a \\ \text{matrix simétrica. } n \times n}} & \begin{bmatrix}
I_a \\ I_a \\ \vdots \\ I_n
\end{bmatrix} = \begin{bmatrix}
\pm \sum_{\substack{L \\ E_a \\ \text{matrix simétrica. } n \times n}} & \begin{bmatrix}
I_a \\ I_a \\ \vdots \\ I_n
\end{bmatrix} = \begin{bmatrix}
\pm \sum_{\substack{L \\ E_a \\ \text{matrix simétrica. } n \times n}} & \begin{bmatrix}
I_a \\ I_a \\ \vdots \\ I_n
\end{bmatrix} = \begin{bmatrix}
\pm \sum_{\substack{L \\ E_a \\ \text{matrix simétrica. } n \times n}} & \begin{bmatrix}
I_a \\ I_a \\ \vdots \\ I_n
\end{bmatrix} = \begin{bmatrix}
\pm \sum_{\substack{L \\ E_a \\ \text{matrix simetrica. } n \times n}} & \begin{bmatrix}
I_a \\ I_a \\ \vdots \\ I_n
\end{bmatrix} = \begin{bmatrix}
\pm \sum_{\substack{L \\ E_a \\$$

- $\sum R_{xx}$ suma de las resistencias incluidas en la malla de I_x
- $\sum R_{xy}$ suma de las resistencias incluidas en las ramas compartidas por las mallas de I_x e I_y ('+' si las corrientes I_x e I_y van en el mismo sentido en esa rama, '-' en caso contrario)
 - $\sum \epsilon_x$ suma algebraica de las fuerzas electromotrices de los generadores de la malla de I_x ('+' si I_x sale por el + de la fuente, '-' en caso contrario)

Procedimiento para el método de las mallas

- 1 Identificar las corrientes de rama
- 2 Asignar un sentido a las corrientes de malla
- 3 Relacionar corrientes de rama con corrientes de malla
- 4 Escribir sistema de ecuaciones de mallas
- **5** Resolver el sistema de ecs., obteniendo las corrientes de malla
- 6 Obtener las corrientes de rama a partir de las relaciones del punto 3

Importante: todos los generadores deben ser fuentes de tensión

Interludio: descarbonización, ¿electrificación directa o H₂?

Caso de la calefacción: ¿bombas de calor o calderas de H₂?

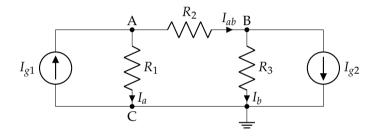
- Conceptos fundamentales
- 2 Elementos de los circuitos
- 3 Leyes de Kirchhoff
- Métodos de análisis

Método de las mallas

Método de los nudos

Método de los nudos

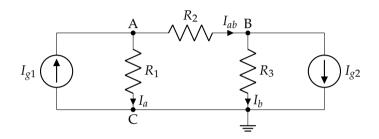
El método de los nudos se basa en las relaciones entre corrientes de la 1LK



Primer paso: si no viene determinado en el enunciado, elegir **nudo de referencia** de potenciales (nudo de tierra)

► Conveniente elegir el nudo que conecte mayor número de elementos (porque simplifica ligeramente las ecuaciones)

Ecuaciones de nudo, aplicando 1LK



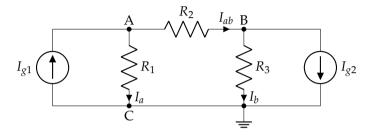
Nudo A

$$I_{g1} - I_a - I_{ab} = 0$$

Nudo B

$$I_{ab} - I_{g2} - I_b = 0$$

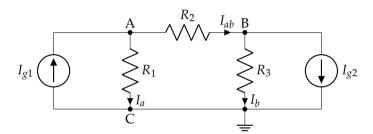
Tensiones en las resistencias, ley de Ohm



$$U_A = I_a \cdot R_1 \quad \rightarrow \quad I_a = \frac{U_A}{R_1}$$
 $U_B = I_b \cdot R_3 \quad \rightarrow \quad I_b = \frac{U_B}{R_3}$
 $U_{AB} = I_{ab} \cdot R_2 \quad \rightarrow \quad I_{ab} = \frac{U_A - U_B}{R_2}$

Combinando las ecuaciones de nudos con la ley de Ohm

Objetivo: despejar los potenciales en cada nudo



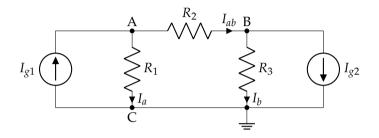
Nudo A

$$I_{g1} - \frac{U_A}{R_1} - \frac{U_A - U_B}{R_2} = 0 \quad \to \quad I_{g1} = U_A \cdot \left(\frac{1}{R_1} + \frac{1}{R_2}\right) - \frac{U_B}{R_2}$$

Nudo B

$$\frac{U_A - U_B}{R_2} - I_{g2} - \frac{U_B}{R_3} = 0 \quad o \quad -I_{g2} = -\frac{U_A}{R_2} + U_B \cdot \left(\frac{1}{R_2} + \frac{1}{R_3}\right)$$

Y expresando en forma matricial



$$\begin{bmatrix} \frac{1}{R_1} + \frac{1}{R_2} & -\frac{1}{R_2} \\ -\frac{1}{R_2} & \frac{1}{R_2} + \frac{1}{R_3} \end{bmatrix} \cdot \begin{bmatrix} U_A \\ U_B \end{bmatrix} = \begin{bmatrix} I_{g1} \\ -I_{g2} \end{bmatrix}$$

Ecuación general del método de los nudos

$$\begin{bmatrix}
\sum G_{AA} & -\sum G_{AB} & \dots & -\sum G_{AN} \\
-\sum G_{BA} & \sum G_{BB} & \dots & -\sum G_{BN} \\
\vdots & \vdots & \ddots & \vdots \\
-\sum G_{NA} & -\sum G_{NB} & \dots & \sum G_{NN}
\end{bmatrix} \cdot \begin{bmatrix} U_A \\ U_B \\ \vdots \\ U_N \end{bmatrix} = \begin{bmatrix} \pm \sum I_{g_A} \\ \pm \sum I_{g_B} \\ \vdots \\ \pm \sum I_{g_N} \end{bmatrix}$$
matriz simétrica, $N \times N$ ($N = n^\circ$ nudos -1)

- $\sum G_{XX}$ Suma de las conductancias conectadas al nudo X
- $\sum G_{XY}$ Suma de las conductancias conectadas entre los nudos X e Y
- $\sum I_{g_X}$ Suma algebraica de las corrientes de los generadores conectados al nudo X ('+' si el generador inyecta corriente en el nudo, '-' en caso contrario)

Importante: todos los generadores deben ser fuentes de corriente