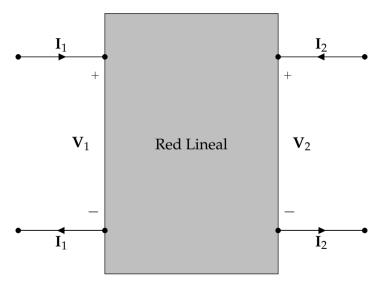
Cuadripolos Teoría de Circuitos III

Oscar Perpiñán Lamigueiro

- 1 Introducción
- 2 Parámetros de Cuadripolos
- 3 Relación entre parámetros
- 4 Cuadripolos entre Dipolos Terminales
- **5** Asociación de Cuadripolos

Cuadripolo



Atención al sentido de las corrientes

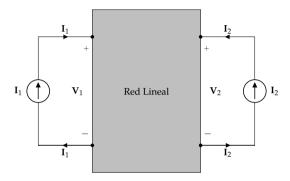
Cuadripolos Recíprocos y Simétricos

- Un cuadripolo es recíproco si, al intercambiar la posición de las excitaciones, la respuesta en el puerto correspondiente no sufre cambios (teorema de reciprocidad).
- ▶ Un cuadripolo lineal (RLC) y **sin fuentes dependientes** es recíproco.
- ► Un cuadripolo recíproco es simétrico si se puede intercambiar la entrada con la salida (simetría física).

- 1 Introducción
- 2 Parámetros de Cuadripolos
- 3 Relación entre parámetros
- 4 Cuadripolos entre Dipolos Terminales
- **5** Asociación de Cuadripolos

- Introducción
- 2 Parámetros de Cuadripolos
 - Parámetros de Impedancia
 - Parámetros de Admitancia
 - Parámetros Híbridos
 - Parametros Hibridos Inversos
 - Parámetros de Transmisión
 - Parámetros de Transmisión Inversa
- **3** Relación entre parámetros
- 4 Cuadripolos entre Dipolos Terminales
- Asociación de Cuadripolos

Definición

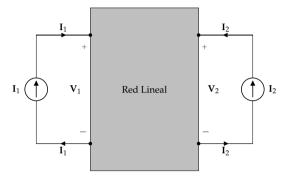


Mediante teorema de superposición:

$$egin{aligned} \mathbf{V}_1 &= \mathbf{z}_{11} \mathbf{I}_1 + \mathbf{z}_{12} \mathbf{I}_2 \ \mathbf{V}_2 &= \mathbf{z}_{21} \mathbf{I}_1 + \mathbf{z}_{22} \mathbf{I}_2 \end{aligned}$$

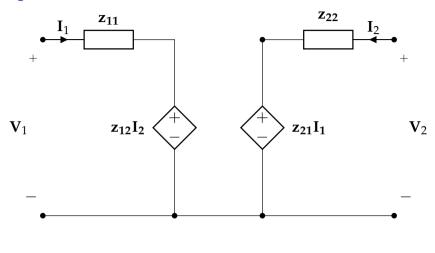
Las variables independientes (*generadores*) son I_1 e I_2 .

Expresión Matricial



$$\left[\begin{array}{c} \mathbf{V}_1 \\ \mathbf{V}_2 \end{array}\right] = \left[\begin{array}{cc} \mathbf{z}_{11} & \mathbf{z}_{12} \\ \mathbf{z}_{21} & \mathbf{z}_{22} \end{array}\right] \cdot \left[\begin{array}{c} \mathbf{I}_1 \\ \mathbf{I}_2 \end{array}\right]$$

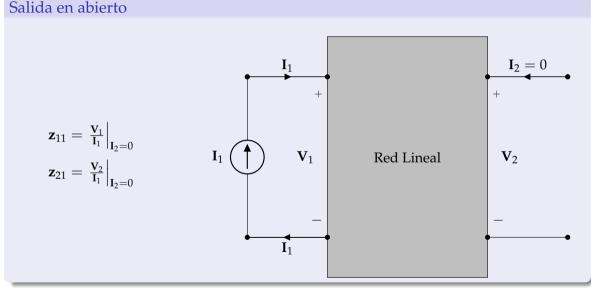
Circuito Equivalente

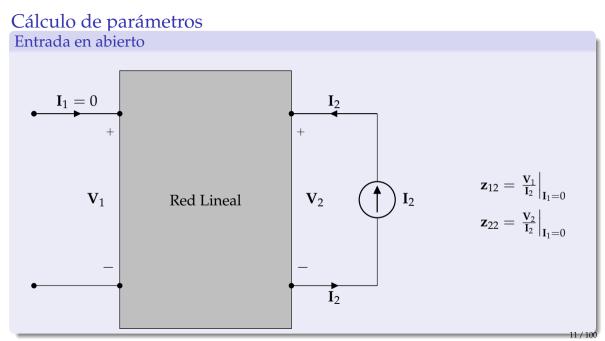


$$\begin{aligned} &V_1 = z_{11}I_1 + z_{12}I_2 \\ &V_2 = z_{21}I_1 + z_{22}I_2 \end{aligned}$$

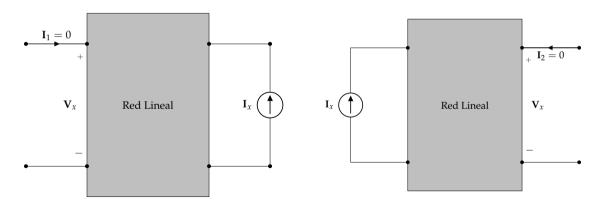
Cálculo de parámetros

Salida en abierto





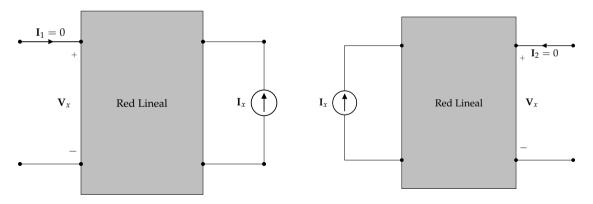
Reciprocidad



Relación entre parámetros

Las impedancias de transferencia son idénticas

$$\left\{egin{aligned} \mathbf{V}_x &= \mathbf{z}_{11}0 + \mathbf{z}_{12}\mathbf{I}_x \\ \mathbf{V}_x &= \mathbf{z}_{21}\mathbf{I}_x + \mathbf{z}_{22}0 \end{aligned}
ight\}
ightarrow \left[\mathbf{z}_{12} = \mathbf{z}_{21}\right]$$

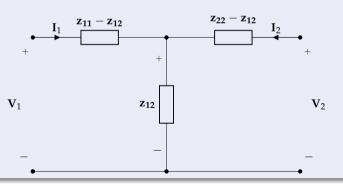


Circuito Equivalente en T

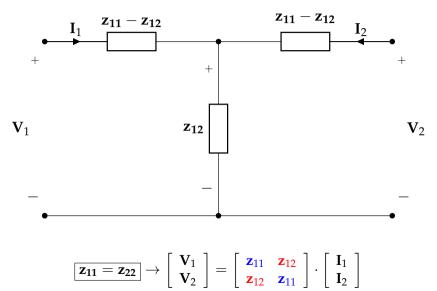
$$\boxed{ \mathbf{z_{12}} = \mathbf{z_{21}} } \rightarrow \left[\begin{array}{c} \mathbf{V_1} \\ \mathbf{V_2} \end{array} \right] = \left[\begin{array}{cc} \mathbf{z_{11}} & \mathbf{z_{12}} \\ \mathbf{z_{12}} & \mathbf{z_{22}} \end{array} \right] \cdot \left[\begin{array}{c} \mathbf{I_1} \\ \mathbf{I_2} \end{array} \right]$$

Ejercicio

Demostrar que un cuadripolo recíproco es equivalente al circuito en T de la figura.



Cuadripolo Simétrico



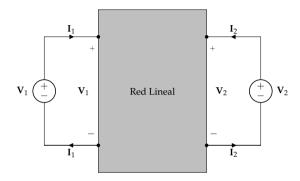
No siempre hay parámetros Z

¿Cuáles son los parámetros Z...

- ▶ de un transformador ideal?
- de una impedancia serie?

- Introducción
- 2 Parámetros de Cuadripolos
 - Parámetros de Impedancia
 - Parámetros de Admitancia
 - Parámetros Híbridos
 - Parámetros Híbridos Inversos
 - Parámetros de Transmisiór
 - Parámetros de Transmisión Inversa
- **3** Relación entre parámetros
- 4 Cuadripolos entre Dipolos Terminales
- Asociación de Cuadripolos

Definición

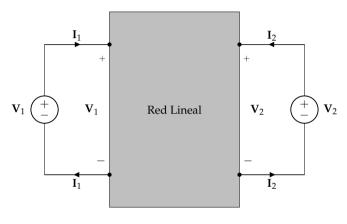


Mediante teorema de superposición:

$$\begin{split} I_1 &= y_{11}V_1 + y_{12}V_2 \\ I_2 &= y_{21}V_1 + y_{22}V_2 \end{split}$$

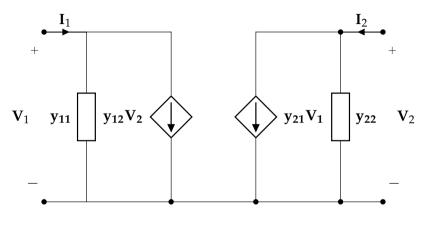
Las variables independientes (*generadores*) son V_1 e V_2 .

Expresión Matricial



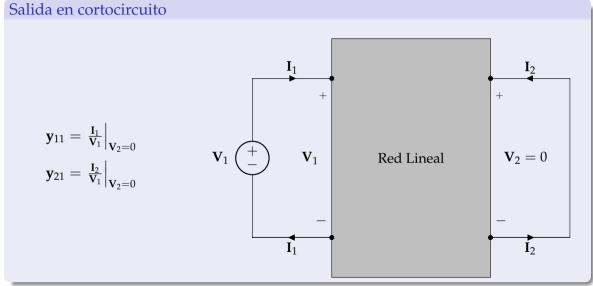
$$\left[\begin{array}{c}\mathbf{I}_1\\\mathbf{I}_2\end{array}\right] = \left[\begin{array}{cc}\mathbf{y}_{11} & \mathbf{y}_{12}\\\mathbf{y}_{21} & \mathbf{y}_{22}\end{array}\right] \cdot \left[\begin{array}{c}\mathbf{V}_1\\\mathbf{V}_2\end{array}\right]$$

Circuito Equivalente

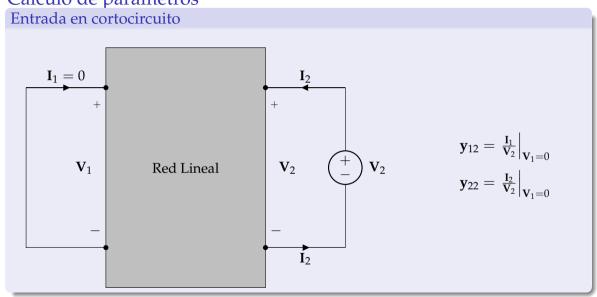


$$\begin{split} \mathbf{I}_1 &= y_{11} \mathbf{V}_1 + y_{12} \mathbf{V}_2 \\ \mathbf{I}_2 &= y_{21} \mathbf{V}_1 + y_{22} \mathbf{V}_2 \end{split}$$

Cálculo de parámetros

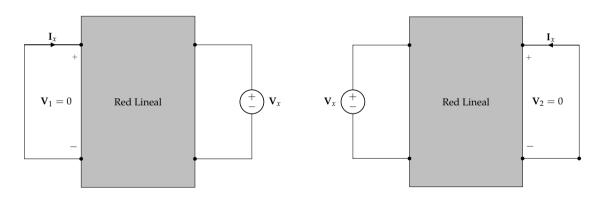


Cálculo de parámetros



Reciprocidad

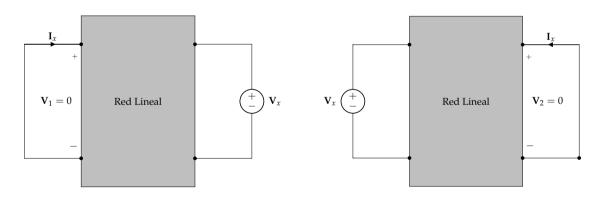
$$\begin{array}{c|c} \mathbf{I_1} | & \mathbf{V_1} = \mathbf{0} & = \mathbf{I_2} | & \mathbf{V_2} = \mathbf{0} \\ & \mathbf{V_2} = \mathbf{V_x} & & \mathbf{V_1} = \mathbf{V_x} \end{array}$$



Relación entre parámetros

Las admitancias de transferencia son idénticas

$$\left\{egin{aligned} \mathbf{I}_x &= \mathbf{y}_{11}0 + \mathbf{y}_{12}\mathbf{V}_x \ \mathbf{I}_x &= \mathbf{y}_{21}\mathbf{V}_x + \mathbf{y}_{22}0 \end{aligned}
ight\}
ightarrow \left\{egin{aligned} \mathbf{y}_{12} &= \mathbf{y}_{21} \end{aligned}
ight.$$

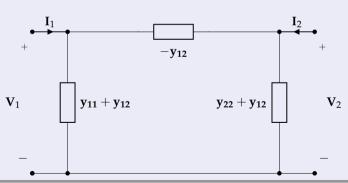


Circuito Equivalente en π

$$\boxed{\mathbf{y_{12} = y_{21}}} \rightarrow \left[\begin{array}{c} \mathbf{I_1} \\ \mathbf{I_2} \end{array} \right] = \left[\begin{array}{c} \mathbf{y_{11}} & \mathbf{y_{12}} \\ \mathbf{y_{12}} & \mathbf{y_{22}} \end{array} \right] \cdot \left[\begin{array}{c} \mathbf{V_1} \\ \mathbf{V_2} \end{array} \right]$$

Ejercicio

Demostrar que un cuadripolo recíproco es equivalente al circuito en π de la figura.



Cuadripolo Simétrico



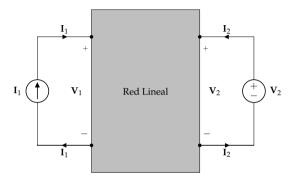
No siempre hay parámetros Y

¿Cuáles son los parámetros Y ...

- ▶ de un transformador ideal?
- de una impedancia paralelo?

- Introducción
- 2 Parámetros de Cuadripolos
 - Parámetros de Impedancia
 - Parámetros de Admitancia
 - Parámetros Híbridos
 - Parámetros Híbridos Inversos
 - Parámetros de Transmisión
 - Parámetros de Transmisión Inversa
- Relación entre parámetros
- 4 Cuadripolos entre Dipolos Terminales
- Asociación de Cuadripolos

Definición



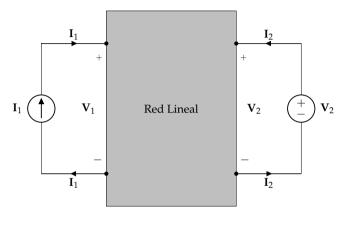
Mediante teorema de superposición:

$$V_1 = h_{11}I_1 + h_{12}V_2$$

 $I_2 = h_{21}I_1 + h_{22}V_2$

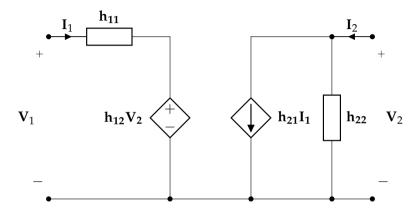
Las variables independientes (generadores) son I_1 e V_2 .

Expresión Matricial



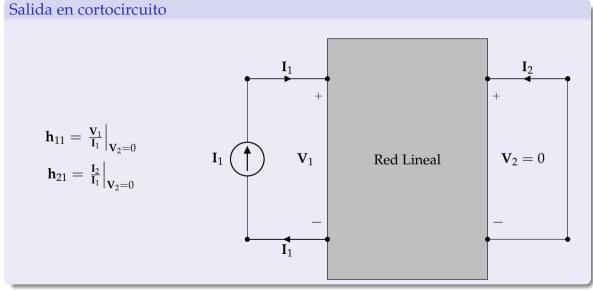
$$\left[egin{array}{c} \mathbf{V}_1 \ \mathbf{I}_2 \end{array}
ight] = \left[egin{array}{c} \mathbf{h}_{11} & \mathbf{h}_{12} \ \mathbf{h}_{21} & \mathbf{h}_{22} \end{array}
ight] \cdot \left[egin{array}{c} \mathbf{I}_1 \ \mathbf{V}_2 \end{array}
ight]$$

Circuito Equivalente

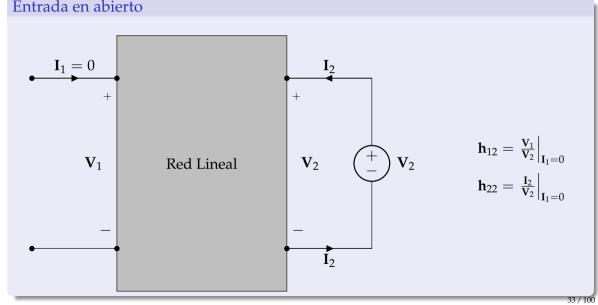


$$\begin{aligned} V_1 &= h_{11}I_1 + h_{12}V_2 \\ I_2 &= h_{21}I_1 + h_{22}V_2 \end{aligned}$$

Cálculo de parámetros

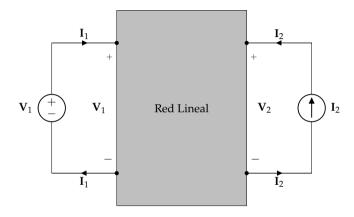


Cálculo de parámetros Entrada en abierto



- Introducción
- 2 Parámetros de Cuadripolos
 - Parámetros de Impedancia
 - Parámetros de Admitancia
 - Parámetros Híbridos
 - Parámetros Híbridos Inversos
 - Parámetros de Transmisión
 - Parámetros de Transmisión Inversa
- Relación entre parámetros
- 4 Cuadripolos entre Dipolos Terminales
- Asociación de Cuadripolos

Definición

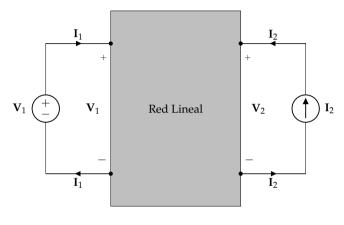


Mediante teorema de superposición:

$$egin{aligned} \mathbf{I}_1 &= \mathbf{g}_{11} \mathbf{V}_1 + \mathbf{g}_{12} \mathbf{I}_2 \ \mathbf{V}_2 &= \mathbf{g}_{21} \mathbf{V}_1 + \mathbf{g}_{22} \mathbf{I}_2 \end{aligned}$$

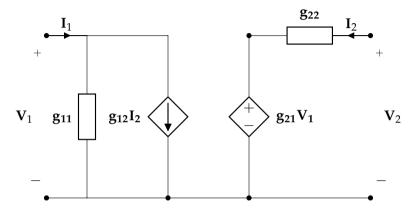
Las variables independientes (generadores) son V_1 e I_2 .

Expresión Matricial



$$\left[egin{array}{c} \mathbf{I}_1 \ \mathbf{V}_2 \end{array}
ight] = \left[egin{array}{cc} \mathbf{g}_{11} & \mathbf{g}_{12} \ \mathbf{g}_{21} & \mathbf{g}_{22} \end{array}
ight] \cdot \left[egin{array}{c} \mathbf{V}_1 \ \mathbf{I}_2 \end{array}
ight]$$

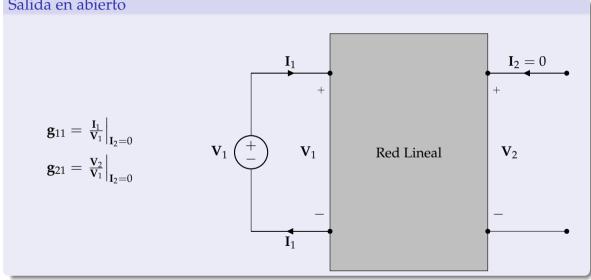
Circuito Equivalente



$$\begin{split} \textbf{I}_1 &= \textbf{g}_{11} \textbf{V}_1 + \textbf{g}_{12} \textbf{I}_2 \\ \textbf{V}_2 &= \textbf{g}_{21} \textbf{V}_1 + \textbf{g}_{22} \textbf{I}_2 \end{split}$$

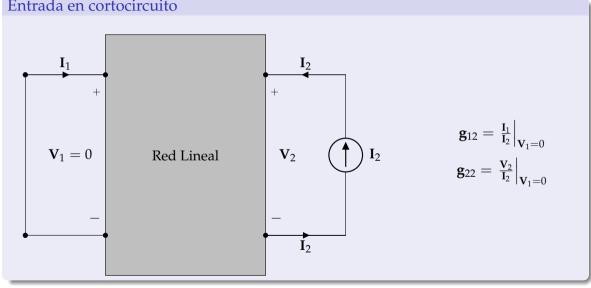
Cálculo de parámetros

Salida en abierto



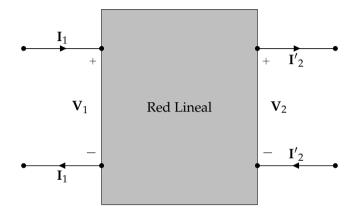
Cálculo de parámetros

Entrada en cortocircuito



- Introducción
- 2 Parámetros de Cuadripolos
 - Parámetros de Impedancia
 - Parámetros de Admitancia
 - Parámetros Híbridos
 - Parámetros Híbridos Inversos
 - Parámetros de Transmisión
 - Parámetros de Transmisión Inversa
- Relación entre parámetros
- 4 Cuadripolos entre Dipolos Terminales
- Asociación de Cuadripolos

Definición

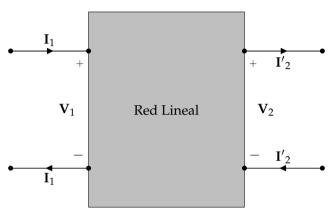


$$V_1 = AV_2 + BI'_2$$

$$I_1 = CV_2 + DI'_2$$

Atención al sentido de la corriente I'_2 . ($I'_2 = -I_2$).

Expresión Matricial



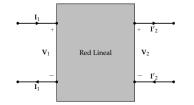
$$\left[\begin{array}{c} \mathbf{V}_1 \\ \mathbf{I}_1 \end{array}\right] = \left[\begin{array}{cc} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{array}\right] \cdot \left[\begin{array}{c} \mathbf{V}_2 \\ \mathbf{I}'_2 \end{array}\right]$$

Cálculo de parámetros

Se debe medir el inverso de cada parámetro, dado que la magnitud a medir y la excitación pertenecen al mismo puerto.

$$\frac{1}{\mathbf{A}} = \frac{\mathbf{V}_2}{\mathbf{V}_1}\Big|_{\mathbf{I}_2=0} \quad \frac{1}{\mathbf{B}} = \frac{\mathbf{I}'_2}{\mathbf{V}_1}\Big|_{\mathbf{V}_2=0}$$

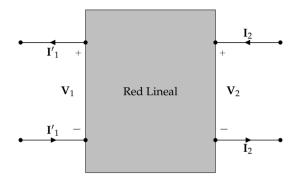
$$\frac{1}{\mathbf{C}} = \frac{\mathbf{V}_2}{\mathbf{I}_1}\Big|_{\mathbf{I}_2=0} \quad \frac{1}{\mathbf{D}} = \frac{\mathbf{I}'_2}{\mathbf{I}_1}\Big|_{\mathbf{V}_2=0}$$



 $\begin{aligned} \mathbf{V}_1 &= \mathbf{A}\mathbf{V}_2 + \mathbf{B}\mathbf{I}'_2 \\ \mathbf{I}_1 &= \mathbf{C}\mathbf{V}_2 + \mathbf{D}\mathbf{I}'_2 \end{aligned}$

- Introducción
- 2 Parámetros de Cuadripolos
 - Parámetros de Impedancia
 - Parámetros de Admitancia
 - Parámetros Híbridos
 - Parámetros Híbridos Inversos
 - Parámetros de Transmisión
 - Parámetros de Transmisión Inversa
- 3 Relación entre parámetros
- 4 Cuadripolos entre Dipolos Terminales
- Asociación de Cuadripolos

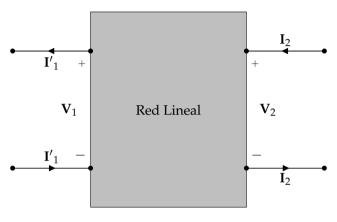
Definición



$$\begin{aligned} \mathbf{V}_2 &= \mathbf{a} \mathbf{V}_1 + \mathbf{b} \mathbf{I}'_1 \\ \mathbf{I}_2 &= \mathbf{c} \mathbf{V}_1 + \mathbf{d} \mathbf{I}'_1 \end{aligned}$$

Atención al sentido de la corriente \mathbf{I}'_1 ($\mathbf{I}'_1 = -\mathbf{I}_1$).

Expresión Matricial

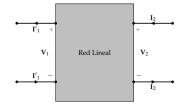


$$\left[\begin{array}{c} \mathbf{V}_2 \\ \mathbf{I}_2 \end{array}\right] = \left[\begin{array}{cc} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{array}\right] \cdot \left[\begin{array}{c} \mathbf{V}_1 \\ \mathbf{I}'_1 \end{array}\right]$$

Cálculo de parámetros

Se debe medir el inverso de cada parámetro, dado que la magnitud a medir y la excitación pertenecen al mismo puerto.

$$\begin{aligned} \frac{1}{\mathbf{a}} &= \left. \frac{\mathbf{V}_1}{\mathbf{V}_2} \right|_{\mathbf{I}_1 = \mathbf{0}} \quad \frac{1}{\mathbf{b}} &= \left. \frac{\mathbf{I}'_1}{\mathbf{V}_2} \right|_{\mathbf{V}_1 = \mathbf{0}} \\ \\ \frac{1}{\mathbf{c}} &= \left. \frac{\mathbf{V}_1}{\mathbf{I}_2} \right|_{\mathbf{I}_1 = \mathbf{0}} \quad \frac{1}{\mathbf{d}} &= \left. \frac{\mathbf{I}'_1}{\mathbf{I}_2} \right|_{\mathbf{V}_1 = \mathbf{0}} \end{aligned}$$



 $\begin{aligned} \mathbf{V}_2 &= \mathbf{a}\mathbf{V}_1 + \mathbf{b}\mathbf{I}'_1 \\ \mathbf{I}_2 &= \mathbf{c}\mathbf{V}_1 + \mathbf{d}\mathbf{I}'_1 \end{aligned}$

- 1 Introducción
- 2 Parámetros de Cuadripolos
- 3 Relación entre parámetros
- 4 Cuadripolos entre Dipolos Terminales
- **5** Asociación de Cuadripolos

Impedancia y Admitancia

$$\left[egin{array}{c} \mathbf{V}_1 \ \mathbf{V}_2 \end{array}
ight] = \left[egin{array}{ccc} \mathbf{z}_{11} & \mathbf{z}_{12} \ \mathbf{z}_{21} & \mathbf{z}_{22} \end{array}
ight] \cdot \left[egin{array}{c} \mathbf{I}_1 \ \mathbf{I}_2 \end{array}
ight] \ \left[egin{array}{c} \mathbf{I}_1 \ \mathbf{I}_2 \end{array}
ight] = \left[egin{array}{c} \mathbf{y}_{11} & \mathbf{y}_{12} \ \mathbf{y}_{21} & \mathbf{y}_{22} \end{array}
ight] \cdot \left[egin{array}{c} \mathbf{V}_1 \ \mathbf{V}_2 \end{array}
ight]
ight\}$$

Híbridos

$$egin{bmatrix} egin{bmatrix} \mathbf{V}_1 \ \mathbf{I}_2 \end{bmatrix} = egin{bmatrix} \mathbf{h}_{11} & \mathbf{h}_{12} \ \mathbf{h}_{21} & \mathbf{h}_{22} \end{bmatrix} \cdot egin{bmatrix} \mathbf{I}_1 \ \mathbf{V}_2 \end{bmatrix} \ egin{bmatrix} \mathbf{I}_1 \ \mathbf{V}_2 \end{bmatrix} = egin{bmatrix} \mathbf{g}_{11} & \mathbf{g}_{12} \ \mathbf{g}_{21} & \mathbf{g}_{22} \end{bmatrix} \cdot egin{bmatrix} \mathbf{V}_1 \ \mathbf{I}_2 \end{bmatrix} \end{pmatrix}
ightarrow egin{bmatrix} [\mathbf{H}] = [\mathbf{G}]^{-1} \ \end{bmatrix}$$

Transmisión

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_1 \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{V}_2 \\ \mathbf{I}'_2 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{V}_2 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}'_1 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} = \begin{bmatrix} \mathbf{a} & -\mathbf{b} \\ -\mathbf{c} & \mathbf{d} \end{bmatrix}^{-1}$$

	z		y		h		g		T		t	
z	\mathbf{z}_{11}	\mathbf{z}_{12}	$\frac{\mathbf{y}_{22}}{\Delta_y}$	$-\frac{\mathbf{y}_{12}}{\Delta_{\mathbf{y}}}$	$\frac{\Delta_h}{\mathbf{h}_{22}}$	$\frac{\mathbf{h}_{12}}{\mathbf{h}_{22}}$	$\frac{1}{g_{11}}$	$-\frac{{\bf g}_{12}}{{\bf g}_{11}}$	$\frac{\mathbf{A}}{\mathbf{C}}$	$\frac{\Delta_T}{\mathbf{C}}$	$\frac{\mathbf{d}}{\mathbf{c}}$	100
	\mathbf{z}_{21}	\mathbf{z}_{22}	$-\frac{\mathbf{y}_{21}}{\Delta_y}$	$\frac{\mathbf{y}_{11}}{\Delta_y}$	$-\frac{\mathbf{h}_{21}}{\mathbf{h}_{22}}$	$\frac{1}{\mathbf{h}_{22}}$	$\frac{{\bf g}_{21}}{{\bf g}_{11}}$	$rac{\Delta_g}{{f g}_{11}}$	$\frac{1}{\mathbf{C}}$	$\frac{\mathbf{D}}{\mathbf{C}}$	$\frac{\Delta_t}{\mathbf{c}}$	<u>a</u>
y	$rac{\mathbf{z}_{22}}{\Delta_z}$	$-\frac{\mathbf{z}_{12}}{\Delta_z}$	\mathbf{y}_{11}	\mathbf{y}_{12}	$\frac{1}{\mathbf{h}_{11}}$	$-\frac{\mathbf{h}_{12}}{\mathbf{h}_{11}}$	$rac{\Delta_g}{\mathbf{g}_{22}}$	$\frac{\mathbf{g}_{12}}{\mathbf{g}_{22}}$	$\frac{\mathbf{D}}{\mathbf{B}}$	$-\frac{\Delta_T}{\mathbf{B}}$	$\frac{\mathbf{a}}{\mathbf{b}}$	$-\frac{1}{\mathbf{b}}$
	$-\frac{\mathbf{z}_{21}}{\Delta_z}$	$\frac{\mathbf{z}_{11}}{\Delta_z}$	\mathbf{y}_{21}	\mathbf{y}_{22}	$\frac{\mathbf{h}_{21}}{\mathbf{h}_{11}}$	$rac{\Delta_h}{\mathbf{h}_{11}}$	$-\frac{{f g}_{21}}{{f g}_{22}}$	$\frac{1}{{\bf g}_{22}}$	$-\frac{1}{\mathbf{B}}$	$\frac{\mathbf{A}}{\mathbf{B}}$	$-rac{\Delta_t}{\mathbf{b}}$	$\frac{\mathbf{d}}{\mathbf{b}}$
h	$rac{\Delta_z}{\mathbf{z}_{22}}$	$\frac{\mathbf{z}_{12}}{\mathbf{z}_{22}}$	$\frac{1}{\mathbf{y}_{11}}$	$-\frac{\mathbf{y}_{12}}{\mathbf{y}_{11}}$	\mathbf{h}_{11}	\mathbf{h}_{12}	$rac{\mathbf{g}_{22}}{\Delta_g}$	$-rac{{f g}_{12}}{\Delta_g}$	$\frac{\mathbf{B}}{\mathbf{D}}$	$rac{\Delta_T}{\mathbf{D}}$	$\frac{\mathbf{b}}{\mathbf{a}}$	1 a
	$-\frac{\mathbf{z}_{21}}{\mathbf{z}_{22}}$	$\frac{1}{\mathbf{z}_{22}}$	$\frac{y_{21}}{y_{11}}$	$\frac{\Delta_y}{\mathbf{y}_{11}}$	\mathbf{h}_{21}	\mathbf{h}_{22}	$-rac{{f g}_{21}}{\Delta_g}$	$rac{{f g}_{11}}{\Delta_g}$	$-\frac{1}{\mathbf{D}}$	$\frac{\mathbf{C}}{\mathbf{D}}$	$\frac{\Delta_t}{\mathbf{a}}$	a
g	$\frac{1}{\mathbf{z}_{11}}$	$-\frac{\mathbf{z}_{12}}{\mathbf{z}_{11}}$	$\frac{\Delta_y}{\mathbf{y}_{22}}$	$\frac{y_{12}}{y_{22}}$	$\frac{\mathbf{h}_{22}}{\Delta_h}$	$-\frac{\mathbf{h}_{12}}{\Delta_h}$	\mathbf{g}_{11}	\mathbf{g}_{12}	$\frac{\mathbf{C}}{\mathbf{A}}$	$-\frac{\Delta_T}{\mathbf{A}}$	$\frac{\mathbf{c}}{\mathbf{d}}$	$-\frac{1}{d}$
	$\frac{\mathbf{z}_{21}}{\mathbf{z}_{11}}$	$\frac{\Delta_z}{\mathbf{z}_{11}}$	$-\frac{y_{21}}{y_{22}}$	$\frac{1}{\mathbf{y}_{22}}$	$-\frac{\mathbf{h}_{21}}{\Delta_h}$	$\frac{\mathbf{h}_{11}}{\Delta_h}$	\mathbf{g}_{21}	\mathbf{g}_{22}	$\frac{1}{\mathbf{A}}$	$\frac{\mathbf{B}}{\mathbf{A}}$	$\frac{\Delta_t}{\mathbf{d}}$	$-\frac{\mathbf{b}}{\mathbf{d}}$
T	$\frac{\mathbf{z}_{11}}{\mathbf{z}_{21}}$	$\frac{\Delta_z}{\mathbf{z}_{21}}$	$-\frac{\mathbf{y}_{22}}{\mathbf{y}_{21}}$	$-\frac{1}{y_{21}}$	$-rac{\Delta_h}{\mathbf{h}_{21}}$	$-\frac{\mathbf{h}_{11}}{\mathbf{h}_{21}}$	$\frac{1}{{\bf g}_{21}}$	$\frac{\mathbf{g}_{22}}{\mathbf{g}_{21}}$	A	В	$\frac{\mathbf{d}}{\Delta_t}$	$\frac{\mathbf{b}}{\Delta}$
	$\frac{1}{\mathbf{z}_{21}}$	$\frac{\mathbf{z}_{22}}{\mathbf{z}_{21}}$	$-\frac{\Delta_y}{\mathbf{y}_{21}}$	$-\frac{\mathbf{y}_{11}}{\mathbf{y}_{21}}$	$-\frac{\mathbf{h}_{22}}{\mathbf{h}_{21}}$	$-\frac{1}{\mathbf{h}_{21}}$	$\frac{\mathbf{g}_{11}}{\mathbf{g}_{21}}$	$rac{\Delta_g}{{f g}_{21}}$	C	D	$\frac{\mathbf{c}}{\Delta_t}$	$\frac{\mathbf{a}}{\Delta}$
t	$\frac{\mathbf{z}_{22}}{\mathbf{z}_{12}}$	$\frac{\Delta_z}{\mathbf{z}_{12}}$	$-\frac{\mathbf{y}_{11}}{\mathbf{y}_{12}}$	$-\frac{1}{y_{12}}$	$\frac{1}{\mathbf{h}_{12}}$	$\frac{\mathbf{h}_{11}}{\mathbf{h}_{12}}$	$-rac{\Delta_g}{{f g}_{12}}$	$-\frac{{f g}_{22}}{{f g}_{12}}$	$rac{\mathbf{D}}{\Delta_T}$	$rac{\mathbf{B}}{\Delta_T}$	a	b
	$\frac{1}{\mathbf{z}_{12}}$	$\frac{\mathbf{z}_{11}}{\mathbf{z}_{12}}$	$-rac{\Delta_y}{\mathbf{y}_{12}}$	$-\frac{y_{22}}{y_{12}}$	$\frac{\mathbf{h}_{22}}{\mathbf{h}_{12}}$	$rac{\Delta_h}{\mathbf{h}_{12}}$	$-\frac{\mathbf{g}_{11}}{\mathbf{g}_{12}}$	$-\frac{1}{{\bf g}_{12}}$	$rac{\mathbf{C}}{\Delta_T}$	$\frac{\mathbf{A}}{\mathbf{\Delta}_T}$	c	ć
				$\Delta_T = A$ $\Delta_t = \mathbf{a}$	AD – BC d – bc							

Reciprocidad

A partir de las relaciones ya obtenidas para impedancia y admitancia, utilizando la tabla anterior obtenemos la relación para parámetros híbridos y de transmisión:

$$\left. egin{array}{l} \mathbf{z_{12}} = \mathbf{z_{21}} \\ \mathbf{y_{12}} = \mathbf{y_{21}} \end{array}
ight\}
ightarrow \left\{ egin{array}{l} \mathbf{h_{12}} = -\mathbf{h_{21}} \\ \mathbf{g_{12}} = -\mathbf{g_{21}} \\ \mathbf{AD} - \mathbf{BC} = 1 \\ \mathbf{ad} - \mathbf{bc} = 1 \end{array}
ight.$$

Simetría

A partir de las relaciones ya obtenidas para impedancia y admitancia, utilizando la tabla anterior obtenemos la relación para parámetros híbridos y de transmisión:

$$\left. \begin{array}{l} \mathbf{z_{11}} = \mathbf{z_{22}} \\ \mathbf{y_{11}} = \mathbf{y_{22}} \end{array} \right\} \rightarrow \left\{ \begin{array}{l} \mathbf{h_{11}} \cdot \mathbf{h_{22}} - \mathbf{h_{12}}^2 = 1 \\ \mathbf{g_{11}} \cdot \mathbf{g_{22}} - \mathbf{g_{12}}^2 = 1 \\ \mathbf{A} = \mathbf{D} \\ \mathbf{a} = \mathbf{d} \end{array} \right.$$

Además:

$$[T] = [t]$$

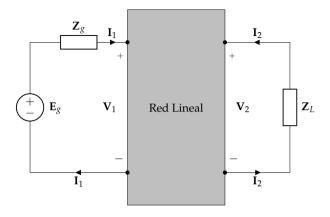
- 1 Introducción
- 2 Parámetros de Cuadripolos
- Relación entre parámetros
- **4** Cuadripolos entre Dipolos Terminales
- **5** Asociación de Cuadripolos

- Introducción
- 2 Parámetros de Cuadripolos
- 3 Relación entre parámetros
- 4 Cuadripolos entre Dipolos Terminales

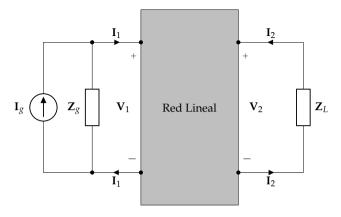
Situación General

Parámetros Imagen

5 Asociación de Cuadripolos

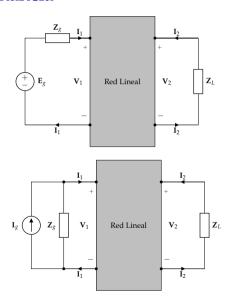


$$\mathbf{V}_1 = \mathbf{E}_g - \mathbf{Z}_g \cdot \mathbf{I}_1$$
$$\mathbf{V}_2 = -\mathbf{Z}_L \cdot \mathbf{I}_2$$



$$\mathbf{V}_1 = (\mathbf{I}_g - \mathbf{I}_1) \cdot \mathbf{Z}_g$$
$$\mathbf{V}_2 = -\mathbf{Z}_L \cdot \mathbf{I}_2$$

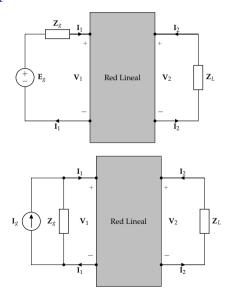
Ganancia



lack Ganancia de Tensión ${f A}_V = rac{{f V}}{{f F}}$

 \blacktriangleright Ganancia de Corriente $\mathbf{A}_{I} = \frac{\mathbf{I}_{2}}{\mathbf{I}_{g}}$

Impedancia



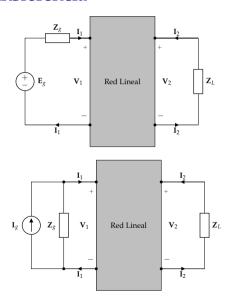
► Impedancia de Entrada

$$\mathbf{Z}_i = rac{\mathbf{v}_1}{\mathbf{I}_1}$$

► Impedancia de Salida

$$\left. \mathbf{Z}_o = \left. rac{\mathbf{V}_2}{\mathbf{I}_2}
ight|_{\mathbf{E}_{\mathrm{g}} = 0}$$

Transferencia



► Transadmitancia directa

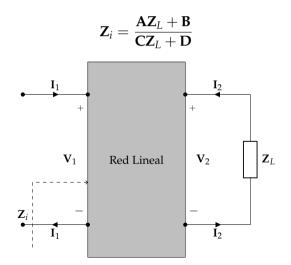
$$\mathbf{Y}_f = \frac{\mathbf{I}_2}{\mathbf{E}_g}$$

► Transimpedancia directa

$$\mathbf{Z}_f = \frac{\mathbf{V}_2}{\mathbf{I}_g}$$

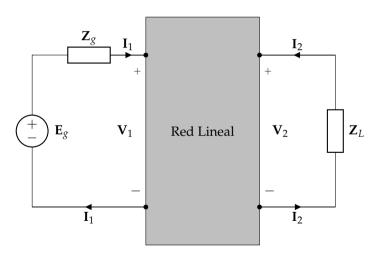
Ejercicio de Cálculo (1)

Demuestra que la impedancia de entrada del circuito a la derecha de la fuente real expresada con parámetros de transmisión es:



Ejercicio de Cálculo (2)

¿Qué impedancia de carga \mathbf{Z}_L hay que conectar a la salida del cuadripolo para obtener la máxima transferencia de potencia?



- 1 Introducción
- 2 Parámetros de Cuadripolos
- Relación entre parámetros
- 4 Cuadripolos entre Dipolos Terminales

Situación General

Parámetros Imagen

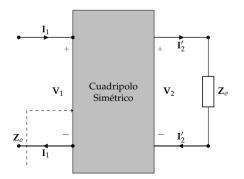
5 Asociación de Cuadripolos

Impedancia Característica

Para un cuadripolo recíproco y simétrico se definen los parámetros imagen:

► Impedancia característica, **Z**₀: impedancia que, conectada en una puerta, hace que desde la otra puerta se vea la misma impedancia.

$$\mathbf{Z}_o = \frac{\mathbf{U}_1}{\mathbf{I}_1}$$



$$\mathbf{Z}_o = rac{\mathbf{A}\mathbf{Z}_o + \mathbf{B}}{\mathbf{C}\mathbf{Z}_o + \mathbf{D}}$$
 $\mathbf{A} = \mathbf{D}
ightarrow \mathbf{Z}_o = \pm \sqrt{rac{\mathbf{B}}{\mathbf{C}}}$

Impedancia Característica

Atención

La ecuación proporciona dos soluciones, una de las cuáles implicará una impedancia no viable (*resistencia negativa*).

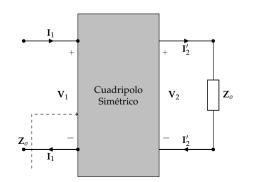
$$Z_o = \pm \sqrt{rac{B}{C}}$$

Función de Propagación

Para un cuadripolo **recíproco** y **simétrico** se definen los parámetros imagen:

Función de propagación, γ : relacionada con el cociente de potencias en las puertas del cuadripolo cuando una de ellas está cargada con \mathbb{Z}_0

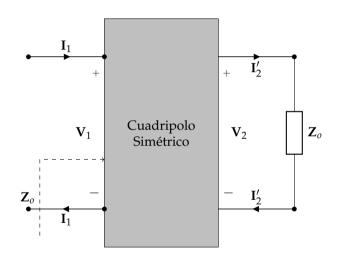
$$\exp(2\gamma) = \frac{\mathbf{U}_1 \mathbf{I}_1}{\mathbf{U}_2 \mathbf{I}_2'}$$



$$\mathbf{U}_1 = \mathbf{I}_1 \mathbf{Z}_o$$
 $\mathbf{U}_2 = \mathbf{I}_2' \mathbf{Z}_o$

$$\exp(\gamma) = \frac{\mathbf{U}_1}{\mathbf{U}_2} = \frac{\mathbf{I}_1}{\mathbf{I}_2'}$$

Relación entre \mathbf{Z}_o y γ



$$\exp(\gamma) = \frac{\mathbf{U}_1}{\mathbf{U}_2} =$$

$$= \frac{\mathbf{A}\mathbf{U}_2 + \mathbf{B}\mathbf{I}_2'}{\mathbf{U}_2} =$$

$$= \mathbf{A} + \mathbf{B}\frac{\mathbf{I}_2'}{\mathbf{U}_2}$$

$$\exp(\gamma) = \mathbf{A} + \frac{\mathbf{B}}{\mathbf{Z}}$$

Relación entre \mathbf{Z}_o y γ

Teniendo en cuenta la expresión de \mathbb{Z}_o :

$$\frac{\mathbf{Z}_o = \pm \sqrt{\frac{\mathbf{B}}{\mathbf{C}}}}{\exp(\gamma) = \mathbf{A} + \frac{\mathbf{B}}{\mathbf{Z}_o}} \ \right\} \rightarrow \boxed{\exp(\gamma) = \mathbf{A} \pm \sqrt{\mathbf{BC}}}$$

Además, teniendo en cuenta la relación de un cuadripolo recíproco y simétrico:

$$\mathbf{A}^2 - \mathbf{BC} = 1 \rightarrow \boxed{\exp(\gamma) = \mathbf{A} \pm \sqrt{\mathbf{A}^2 - 1}}$$

Atención al signo que acompaña a las raíces cuadradas. Se debe elegir de forma que la parte real de γ sea acorde al cuadripolo.

Transmisión a partir de Imagen

$$\mathbf{A}^2 - \mathbf{BC} = 1$$

$$e^{\gamma} = \mathbf{A} + \sqrt{\mathbf{A}^2 - 1}$$
 $\cosh(\gamma) = \frac{e^{\gamma} + e^{-\gamma}}{2}$ $\mathbf{Z}_o = \sqrt{\frac{\mathbf{B}}{\mathbf{C}}}$ $\sinh(\gamma) = \frac{e^{\gamma} - e^{-\gamma}}{2}$ $\cosh^2(\gamma) - \sinh^2(\gamma) = 1$

Régimen Permanente Sinusoidal

Cuando el circuito funciona en régimen permanente sinusoidal:

La función de propagación es un número complejo denominado constante de propagación.

$$\overline{\gamma} = \alpha + j\beta$$

Las tensiones y corrientes son fasores

$$\exp(\overline{\gamma}) = \exp(\alpha) \cdot \exp(j\beta) = \frac{\overline{U}_1}{\overline{U}_2} = \frac{\overline{I}_1}{\overline{I}_2'}$$

Régimen Permanente Sinusoidal

Constante de Atenuación (cuando $\alpha > 1$ el cuadripolo atenúa la salida respecto de la entrada)

$$\exp(\alpha) = \frac{U_1}{U_2} = \frac{I_1}{I_2}$$

► Constante de Fase (desfase entre puertos)

$$\beta = \theta_{\overline{U}_1} - \theta_{\overline{U}_2} = \theta_{\overline{I}_1} - \theta_{\overline{I}_2'}$$

Atenuación de Potencia

Cuando está conectada la impedancia característica, las potencias activas en los puertos se expresan:

$$P_1 = U_1 I_1 \cos(\theta_o)$$

$$P_2 = U_2 I_2 \cos(\theta_o)$$

donde θ_o es el ángulo de la impedancia \overline{Z}_o .

Por tanto, la relación de potencias activas es:

$$\frac{P_1}{P_2} = \frac{U_1 I_1}{U_2 I_2}$$

Teniendo en cuenta la expresión de la constante de atenuación, esta relación es:

$$\exp(\alpha) = \frac{U_1}{U_2} = \frac{I_1}{I_2} \rightarrow \left| \exp(2\alpha) = \frac{U_1 I_1}{U_2 I_1} = \frac{P_1}{P_2} \right|$$

- 1 Introducción
- 2 Parámetros de Cuadripolos
- 3 Relación entre parámetros
- 4 Cuadripolos entre Dipolos Terminales
- **5** Asociación de Cuadripolos

Conexiones

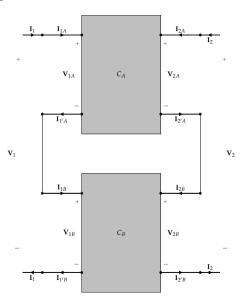
Definición

- **Serie**: misma corriente, suma de tensiones
- ▶ Paralelo: misma tensión, suma de corrientes

Catálogo

- Serie-Serie: parámetros impedancia
- Paralelo-Paralelo: parámetros admitancia
- Serie-Paralelo: parámetros híbridos
- Paralelo-Serie: parámetros híbridos inversos
- Cascada: parámetros transmisión/imagen

- 1 Introducción
- 2 Parámetros de Cuadripolos
- Relación entre parámetros
- ① Cuadripolos entre Dipolos Terminales
- **5** Asociación de Cuadripolos
- Asociación Serie-Serie
 - Asociación Paralelo-Paralelo
 - Asociación Serie-Paralelo
 - Asociación Paralelo-Serie
 - Asociación Cascada

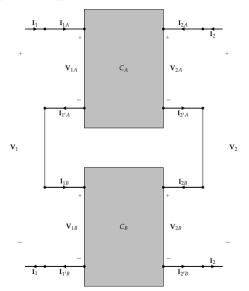


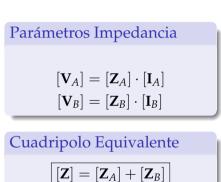
$$\mathbf{V}_1 = \mathbf{V}_{1A} + \mathbf{V}_{1B} \ \mathbf{V}_2 = \mathbf{V}_{2A} + \mathbf{V}_{2B}$$

Condición de Puerto

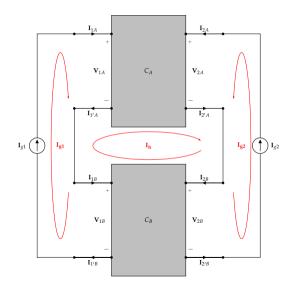
$$\mathbf{I}_{1A} = \mathbf{I}_{1'A}$$
 $\mathbf{I}_{1B} = \mathbf{I}_{1'B}$
 $\mathbf{I}_{2A} = \mathbf{I}_{2'A}$
 $\mathbf{I}_{2B} = \mathbf{I}_{2'B}$

Cuadripolo Equivalente





Interacción



Entrada

$$\mathbf{I}_{1A} = \mathbf{I}_{g1}$$
 $\mathbf{I}_{1'A} = \mathbf{I}_{g1} - \mathbf{I}_{h}$

Salida

$$\mathbf{I}_{2A} = \mathbf{I}_{g2}$$

 $\mathbf{I}_{2'A} = \mathbf{I}_{g2} + \mathbf{I}_{h}$

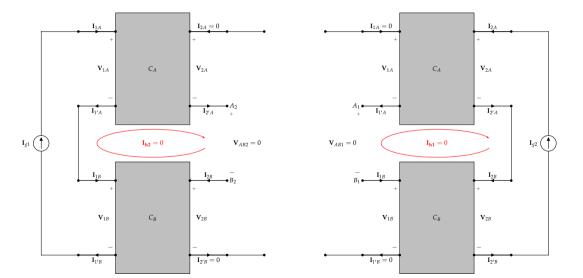
Condición de Puerto

$$\mathbf{I}_h = 0$$

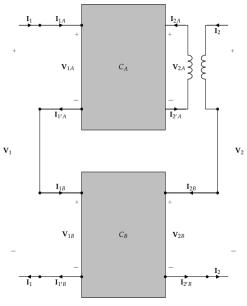
Interacción

Si no hay interacción, al aplicar superposición la corriente de circulación debe ser nula **en ambos casos**.

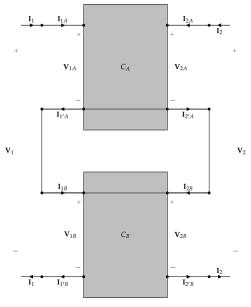




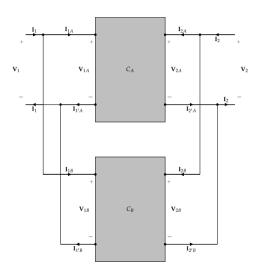
Métodos para evitar interacción



Métodos para evitar interacción



- 1 Introducción
- Parámetros de Cuadripolos
- Relación entre parámetros
- 4 Cuadripolos entre Dipolos Terminales
- **6** Asociación de Cuadripolos
 - Asociación Serie-Serie
 - Asociación Paralelo-Paralelo
 - Asociación Serie-Paralelo
 - Asociación Paralelo-Serie
 - Asociación Cascada



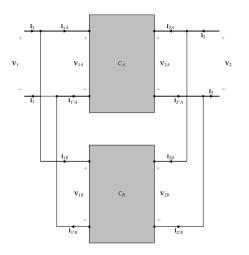
Corrientes

$$\mathbf{I}_1 = \mathbf{I}_{1A} + \mathbf{I}_{1B}$$
 $\mathbf{I}_2 = \mathbf{I}_{2A} + \mathbf{I}_{2B}$

Condición de Puerto

$$\mathbf{I}_{1A} = \mathbf{I}_{1'A}$$
 $\mathbf{I}_{1B} = \mathbf{I}_{1'B}$
 $\mathbf{I}_{2A} = \mathbf{I}_{2'A}$
 $\mathbf{I}_{2B} = \mathbf{I}_{2'B}$

Cuadripolo Equivalente



Parámetros Admitancia

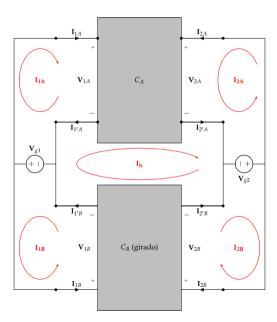
$$[\mathbf{I}_A] = [\mathbf{Y}_A] \cdot [\mathbf{V}_A]$$

 $[\mathbf{I}_B] = [\mathbf{Y}_B] \cdot [\mathbf{V}_B]$

Cuadripolo Equivalente

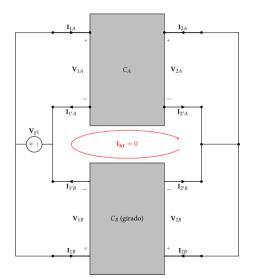
$$[\mathbf{Y}] = [\mathbf{Y}_A] + [\mathbf{Y}_B]$$

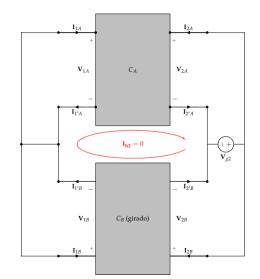
Interacción

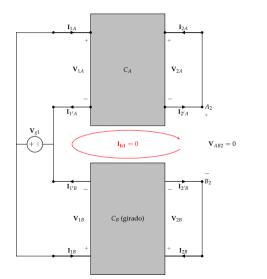


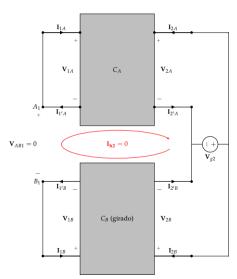
Interacción

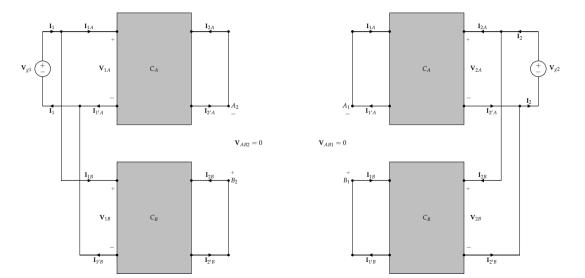
Si no hay interacción, al aplicar superposición la corriente de circulación debe ser nula **en ambos casos**.



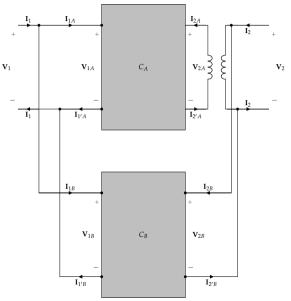




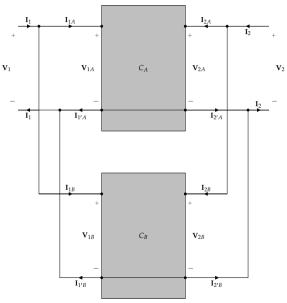




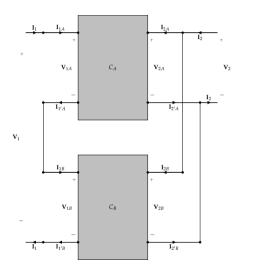
Métodos para evitar interacción



Métodos para evitar interacción



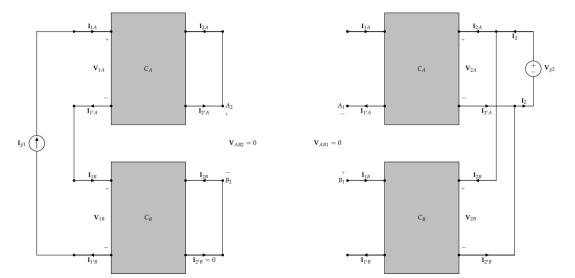
- Introducción
- Parámetros de Cuadripolos
- Relación entre parámetros
- 4 Cuadripolos entre Dipolos Terminales
- 6 Asociación de Cuadripolos
 - Asociación Serie-Serie
 - Asociación Paralelo-Paralelo
 - Asociación Serie-Paralelo
 - Asociación Paralelo-Serie
 - Asociación Cascada



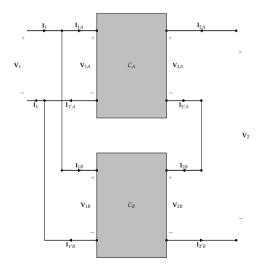
$$\mathbf{V}_1 = \mathbf{V}_{1A} + \mathbf{V}_{1B}$$
 $\mathbf{I}_2 = \mathbf{I}_{2A} + \mathbf{I}_{2B}$

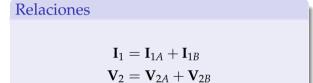
Cuadripolo Equivalente

$$\mathbf{[H]} = \mathbf{[H}_A\mathbf{]} + \mathbf{[H}_B\mathbf{]}$$



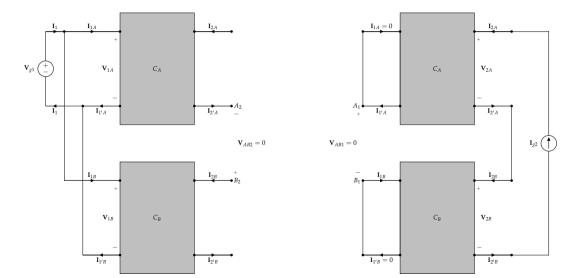
- 1 Introducción
- 2 Parámetros de Cuadripolos
- Relación entre parámetros
- 4 Cuadripolos entre Dipolos Terminales
- **6** Asociación de Cuadripolos
 - Asociación Serie-Serie
 - Asociación Paralelo-Paralelo
 - Asociación Serie-Paralelo
 - Asociación Paralelo-Serie
 - Asociación Cascada



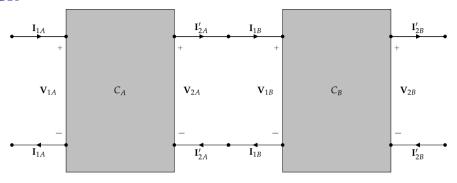


Cuadripolo Equivalente

$$[\mathbf{G}] = [\mathbf{G}_A] + [\mathbf{G}_B]$$



- Introducción
- 2 Parámetros de Cuadripolos
- **3** Relación entre parámetros
- Cuadripolos entre Dipolos Terminales
- **6** Asociación de Cuadripolos
 - Asociación Serie-Seri
 - Asociación Paralelo-Paralelo
 - A : : A D 1 1 C :
 - Asociación Cascada



$$\mathbf{V}_{2A} = \mathbf{V}_{1B}$$
 $\mathbf{I}'_{2A} = \mathbf{I}_{1B}$

$$|\mathbf{T}| = [\mathbf{T}_A] \cdot [\mathbf{T}_B]$$